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Quantitative Analysis of an Invading-Fluid Invasion Front under Gravity
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We report a detailed quantitative comparison between experimental measurements of the structure of
a nonwetting fluid invasion front into a porous medium and a gradient percolation model accounting for
the influence of gravity. The 2D correlation function of the invaded area in horizontal cuts follows a
universal behavior at short distances in the fractal domain in good agreement with numerical predictions.
Variations with the cut height of the mean saturation and of the crossover length between the fractal
and the Euclidean domains can also be fitted precisely with theoretical gradient percolation curves.
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The flow of two nonmiscible fluids through porous
media is one of the real-world problems where the tech-
niques of statistical and disordered media physics have
proved to be most successful. Such concepts as percola-
tion, diffusion-limited aggregation, and fractal geome-
tries have been applied to these phenomena and verified
accurately in 2D model networks. '2 Up to recently,
however, few experiments on more realistic 3D porous
media have been performed s and no full quantitative
comparisons with a theoretical model have been realized
to our knowledge. In this paper, we present a quantita-
tive analysis of an experimental invasion front using a
"gradient percolation" model to account for the influence
of gravity. We shall show that the numerical results per-
mit a detailed analysis of the experimental front struc-
tures.

The "invasion percolation" model has been previously
suggested " to describe the invasion of a porous medi-
um by nonwetting fluid at a low velocity and under zero
gravity. In this approach, the pore volume is modeled as
a disordered lattice of sites (pores) linked by bonds (con-
necting channels). At an injection pressure II, only a
fraction of p(II) of all channels (or pores) can be invad-
ed: Those with a radius r large enough so that II over-
comes the corresponding capillary pressure II(r). The
sample only gets invaded in volume above a minimum
value II, of II (equivalent to the threshold value p, for
the percolation parameter p). For II=II„ the invaded
volume has a fractal geometry analogous to that of a
percolation cluster.

In real life, it is not possible to neglect the influence of
gravity in most 3D systems. The hydrostatic component
adds to the applied injection pressure II, and creates a
vertical gradient in the effective injection pressure II.
Therefore, the fraction of accessible pores decreases with

height and the experimental results cannot be compared
with classical percolation. This missing gradient term
has been recently introduced' ' and the concept of gra-
dient percolation has been proposed to analyze 2D and
3D diffusion processes. We show in this paper that gra-
dient percolation (GP) describes precisely invasion fronts
obtained under gravity (IFG). In particular, we show
that experimental IFG measurements are very similar to
numerical data obtained from GP simulations.

The GP model differs from ordinary percolation on
periodic lattices by a linear variation (Ap per intersite
distance) of the percolation parameter p between 0 and 1

along a lattice axis. As a consequence, there is a "fron-
tier region" connected to the p=0 or p=l lines by a
continuous chain of free or occupied sites, respectively.
This "frontier" is equivalent to the front surface limiting
the invaded volume in the invasion experiment. This is
an essential point in the comparison between GP and
IFG.

The experimental injection system and image analysis
procedure in the IFG has been described elsewhere5 6: A
low-melting-point liquid alloy (Wood s metal) is injected
at the bottom of a vertical evacuated crushed-glass
column of 10 cm inner diameter. The flow velocity U is
low (a few millimeters per hour) so that viscous pressure
losses can be neglected and the capillary number Ca is
«1 (Ca =riU/y, g is the liquid viscosity and y the sur-
face tension). When the front has reached a given
height, the injection is stopped and the liquid is solidi-
fied; then horizontal sections of the front corresponding
to various heights z are analyzed. The pictures are digi-
tized into a square lattice of pixels and "invaded" or
"empty" pixels are discriminated against by a threshold
procedure. We then determine the correlation function
C(r) of the metal distribution in horizontal planes; C(r)
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is the fraction of invaded pixels at a distance r from an

occupied origin site [C(r) is averaged over the origin
pixels for which a/I points at the distance r are within
the picture frame. ]

In the same manner C(r) is determined for the numer-
ical simulation for sites located on the GP frontier: It is
the key tool for analysis of GP and IFG data. In both
cases, close to p, in a range of r values between the indi-
vidual grain size d (which approximately corresponds to
the lattice constant a in the GP model) and an upper
limit X (crossover length), ' C(r) varies roughly as

This seems to show that the cut structure is fractal with

a dimension Dr„at short distances. When r is between X

and the sample size, C(r) has a constant value S propor-
tional to the mean metal saturation S „. As in similar
3D experiments, the values of Dr„k, and S cannot be
directly compared with classical percolation predictions
since the percolation parameter gradient must be taken
into account.

Let us now discuss the equivalence between the
different parameters used in the IFG and GP studies.
The invading-fluid saturation S, the cut height z (related
to the fraction of accessible pores), and the grain size d
correspond respectively to the front concentration pf, the
percolation parameter p, and the lattice constant a.
More precisely, the lattice constant a of the cubic lattice
considered in GP is associated with an average distance
between pores in IFG. This distance is, in practice, pro-
portional to, and of the same order of magnitude as d.
Unless otherwise stated, in the following we shall consid-
er all distances to be measured in lattice units a. The re-
lation between z and p introduces two parameters: the
critical height z, corresponding to the value p =p, of the
percolation parameter and the local slope dp/dz in the
vicinity of p, . At this point an important question is the
relation between the cut height z and the local value of
the percolation parameter p. At low velocities, the
efl'ective injection pressure II varies linearly with z be-
cause of the hydrostatic pressure gradient. The relation
between II and the fraction p of accessible pores depends
on the pore size distribution: It cannot be determined
easily and is almost certainly not linear over the whole
range p=0 to 1. We shall, however, assume that the re-
lation is linear close to p =p, . Hence

p
—p, —-(dp/dz), (z —z, ) =(Vp/a)(z —z, ).

Finally the local fraction pf of sites located on the
frontier in GP must be proportional to the fraction S of
occupied pixels in the digitized pictures. The propor-
tionality coefficient between S and pf depends on the im-

age thresholding procedure and on the pore geometry.
Let us now make scaling-type predictions for the depen-
dence of C(r) on r and the cut height z. In the presence
of gravity, there are two diAerent characteristic lengths

corresponding to the value of p in this plane. The criti-
cal exponent v has the value 0.88 of classical 3D percola-
tion. Relation (2) is equivalent to g(p)~(z —z, ) "if
the relation between z and p is linear close to p =p, .

In the vertical direction parallel to the flow, the gra-
dient percolation front has a scaling behavior depending
on a single length Bz, which (to a constant) represents
the maximum spatial extent of the fractal domain. ' 6z
varies with the probability gradient

~ Vp ~
as (a being

taken as the unit length)

~

—/(I + ) (3)

This result can also be obtained from the assumed linear-

ity between z and p,

Bp/Bz =
( Vp ( /a,

and, from Ref. 16,

sp =c i vp i

'""'. (4)

The existence of the length scale Bz is due to a self-
limitation of the divergence of the correlation length g
because of the variation of p with z. If we use the two
scales Bz and ( to define reduced variables, (z —z, )/Bz
and r/)C(r) can be written from Eq. (26) in (Ref. 16)

3 —
Dfc( )

C1r z —zc

(z —z, )
(5)

where r is measured in pixel units R. C~ =R ~&p ~

"/

a '+' and C2=(R/a) Ipf/S are taken as adjustable
parameters.

A key result obtained through the GP'6 is that, at
short distances r, r IC(r) is determined by the local
fractal structure of the "central" cluster inside which the
origin occupied site is located. Then, at small r,

d —Dfr IC(r) depends only on r/g with a universal law in-
dependent of p —p, . Figure 1 shows the variation of the
corresponding quantity C2r IC(r) for the IFG as a
function of C~r/(z —z, ) ' for 25 different cut heights.
There is a striking similarity with results from the GP
simulation (see Fig. 7 in Ref. 16). As in the GP, the ex-

d —Dfperimental value of r IC(r) indeed follows a universal
law independent of z up to a crossover length k which in-
creases with the cut height z (when the mean saturation
gets lower). In the limit r 0, r C(r) becomes (as

Df —3expected) a nonzero constant and C(r)~r I inde-
pendently of the value of Vp. Df should therefore be
equal to the fractal dimension of the 3D percolation clus-
ter; the best fit is obtained for Df =2.4 which is slightly
lower than the value Df =2.5 for classical 3D percola-

in the problem':
In horizontal planes, z =const, the characteristic

length is the percolation correlation length

(2)

334



VOLUME 61, NUMBER 3 PHYSICAL REVIEW LETTERS 18 JUr v 1988

C3
O
O

C3

10

10

10

4 gg 0 X
~ ~ ~ 0 X

~ ~ +X

~ ~ P +

1.0

0.5—
Ie'

00
O~ -0.5—

-1.0—

10
10 1Q 10 10

I

10 10

-1.5—

-2.0— 0
0

C, r (z-z, )
-25

-1.5 -1.0 -0.5 0.0 0.5 1.0
d-DfFIG. 1. Variation of r C(r) for experimental data ob-

tained from 25 horizontal cuts of a Wood-metal invasion front
in crushed glass: We have used five diA'erent symbols to
separate data at diA'erent cut heights. For the parameter
values we used C~ =4.5X10, C2=1.5, z, =25.5 mm (abso-
lute height for which p =p, ), and Df =2.4.

The values of S obtained from the experimental sys-
tem must follow similar scaling laws. In order to com-
pare the variations of pf and S we plot pf as a function
of the reduced coordinate (p —p, )/hp for the GP, and S
as a function of the corresponding quantity (z, —z)/hz
for the IFG. Then we assume that

pf'/(hp) ~ =KS. (7)

The fit shown in Fig. 2 gives @=9.5 (in good agree-

tion. '9 At longer distances r & k, the value of C(r) ts

determined by farther parts of the clusters in the cut. As
in the GP, C(r) tends towards an asymptotic constant
value of C(~) and all curves in Fig. 1 become parallel
straight lines of slope d —Df. C(~) corresponds (within

a constant factor) to the fraction of occupied pixels at
the corresponding height (in the GP, the limit value is

the fraction pf & p of sites located on the frontier).
The correlation function C(r) provides a detailed

characterization of the front structure; on the other
hand, averages over horizontal sections of such physical
quantities as the invading-fluid concentration or the
crossover length k are more easily measured experimen-

tally and more relevant to practical applications. Let us

take for instance the mean metal saturation S „in the
IFG (proportional to the fraction S of "occupied" pix-

els). It is equivalent to the fraction pf ( &p) of sites lo-

cated on the frontier at a given height in the GP. The
only relevant reduced variable is (z, —z )/hz [or

(p —p, )/hp] since r/g has been averaged out. In the lim-

it
~ Vp ~

0, p & p„one retrieves the results of classical
percolation' and pf' must be independent of Vp and pro-

portional to (p —p, )~. Thus, pf'=pf/p should verify'

pf' =pf/p =
i V~ i

1'i'+ "TIf[(p —p, )/6' p].

(p-pc)»p or (z-z, )/gz

FIG. 2. Variations of the mean invading-Auid saturation S
in the experimental horizontal cuts (diamonds) and the frac-
tion pf of sites located on the numerical gradient percolation
front (squares). The variations are plotted as functions of a re-
duced variable corresponding to the cut height. An adjustable
parameter has been introduced to represent the proportionality
constant between the actual saturation and the digitized im-

ages.

ment with the value C2=1.5 found above) and hz =14
mm. We have used the same value for z, (25.5 mm) ob-
tained from the fit on C(r). One observes that the ex-
perimental and numerical curves are in good agreement
for —0.5 ~ (p —p, )/hp ~ 0. 1; for (p —p, )/hp & —0.5 S
is approximately constant whereas pf decreases to 0. We
interpret this discrepancy as arising from the presence of
a few channels of high permeability inside the crushed
glass. The Wood metal can more easily rise through
them than the rest of the material: This can explain the
presence of a small residual saturation ahead of the main
front.

Let us now put hz =14 mm in Eq. (3). We obtain

~Vp~ =—1/8700 for v=0.88 (classical 3D percolation
value) for a =200 pm (the mean grain size is taken here
to be the lattice constant a). This ~Vp ~

value would

correspond to a height variation Az=-1.75 m for the
overall variation from p=0 to p= 1. This value is un-

realistically high compared with the overall vertical ex-
tent 0 of the front (a few centimeters). The most prob-
able origin for the discrepancy is that the above evalua-
tion assumes that the fraction p of accessible pores in-

creases linearly with the effective injection pressure (and
therefore with z). Az is in fact the inverse of the local
derivative dp(z)/dz of the fraction of accessible pores
around p =p, . Because of the complex geometry of the
crushed-glass grains, the function p(z) is certainly not
linear and very large variations of dp(z)/dz may exist.
Some information on this quantity could be obtained
from a porosimetry-type measurement and by recording
the pressure variations during the invasion of a similar
sample.
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ment with the numerical simulation results for realistic
values of the geometric adjustable parameters of the
model; however the value Df =2.4 for the fractal dimen-

sion of the front in the limit of small distances is smaller
than the value 2.5 expected for classical 3D percolation.
The variations of the mean fluid saturation with the cut
height in the medium and high saturation zones are also
in good agreement with the predictions, in particular for
the crossover length ) between the fractal and the con-
stant saturation domains. More experiments with

different values of the percolation parameter gradient
will, however, be needed to further establish the model's

validity. They could be obtained, for instance, by use of
fluids with a lower density contrast.

FIG. 3. Compared variations of the crossover length X be-
tween the Euclidean and fractal domains in horizontal cuts of
the theoretical GP front (squares) and the experimental in-

vasion front (diamonds).

We have also compared the experimental and numeri-
cal variations of the crossover length X with height. As
above, the reduced variables (p —p, )Alp for the GP and
(z, —z)hiz for the IFG will be used. k verifies scaling
relations similar to Eqs. (6) and (7). Figure 3 shows the
compared variations of X in the experimental and numer-
ical situations after they have been normalized to the
same value for p =p, . Here again, good agreement is

obtained between the two series of data.
In Refs. 5 and 6 values of a "fractal dimension" Dt,

obtained from the mean slope (in log-log coordinates) of
the variation of C(r) with r in the domain r (k are also
reported. It appears from Fig. I that the slope of C(r)
when r 0 is a constant equal to the fractal dimension
of a classical 3D percolation cluster. Dt, as defined in

Refs. 5 and 6 is then just a mean slope of the universal

(decreasing) variation of r IC(r) between r =0 and
r =k (X is itself a decreasing function of the percolation
parameter p). Dt, reported in Ref. 6 is a complex pa-
rameter which is equal to D/ only when p=p, (or
z =z, ).

In conclusion, we have shown in this paper that the
gradient percolation model accounts quantitatively for
experimental observations of the structure of a Wood-
metal invasion front in homogeneous crushed glass. The
variations of the 2D correlation function of the metal
repartition in horizontal cuts performed at difl'erent

heights have been studied. They are in excellent agree-
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