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Optical Memory and Spatial Chaos
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The steady states of an array of bistable optical elements are analyzed by the use of a nonlinear-
dynamics analogy. Spatial chaos is an essential counterpart of effective optical-memory action. Criteria
for stability and maximum packing density are obtained.

PACS numbers: 42.65.8p, 05.45.+b

Optical bistability (OB) has been intensively investi-
gated in recent years, '2 partly at least because of the
possibility of the employment of QB devices as memory
or switching elements in optical computers or processors.
Chaos, both dynamical3 and spatial, has similarly at-
tracted attention, both for its fundamental interest as
complexity generated from simple laws and for its
ubiquity. This work establishes a connection between
optical memory and spatial chaos in a reasonably simple
case which invites generalization. This connection is of
interest because it brings to optical memory and related
systems the powerful mathematical tools and concepts
developed in the study of chaotic systems, while these op-
tical systems provide a new avenue for the investigation
and demonstration of chaotic behavior. An interesting
feature of this correspondence is that here chaos is not
a nuisance, but in fact essential for effective optical
memory.

Optical bistability arises when an optical system can
have two stable output states for a single constant input, '

and thus has a binary memory capability. It frequently
arises from bistability in a material parameter p (refrac-
tive index, temperature, photoexcitaton density, etc. ) due
to nonlinear coupling to the input optical beam(s). If p
relaxes and diffuses transversely, one can model such a
system by a nonlinear partial differential equation5:

where

E = —(Ax+1),

and

V(r) = -l(r)f'(p, (r)).

Stability of y, requires k & 0 for all solutions of (2), and
so the ground state of (2) must have E & —1. Interest-
ing configurations p, (r) include states which are uniform
(all pixels "high" or "low"); defect (e.g. , all but one low)
and random; the corresponding Schrodinger problems
are analogous to those of a crystal, a point defect, and an
alloy, respectively.

The above model is applicable to two-dimensional op-
tical memory arrays, but we now concentrate on the
simpler one-dimensional case. In steady state, Eq. (1) is
then analogous to a Newtonian mechanics problem,
which is Hamiltonian and autonomous if I(x) is con-
stant, but generically chaotic for I(x) periodic, as in a
pixel array. Anticipating that pixel independence will
demand spacing ~ lD, and knowing that "power per pix-
el" decreases with spot size, 6 we naturally make the ap-
proximation

For large enough input intensity I, p will be bistable
provided the response function f(p) is suitably nonlinear:
e.g. , Lorentzian (dispersive OB) or of step-function char-
acter (e.g. , OB due to increasing absorption). An array
of OB elements (pixels) can be defined by a suitable spa-
tial modulation of I(r), and individual pixels would be
set high or low by suitable address pulses: I will not con-
sider further the question of imposing binary patterns on
the array and will assume henceforth that I(r) is con-
stant and spatially periodic, so defining an infinite array
of identical pixels, with stationary states p, (r).

Memory states must be stable: Adding to p, a small
perturbation y(r)e ', we deduce from (1) that y(r)
obeys a Schrodinger-type equation:

i.e., a 8-function array with spacing L diffusion lengths,

corresponding to a kicked mechanical problem. The in-

tegration exactly between "kicks" yields a "stroboscopic
map" for the values A„of p, on the nth pixel:

2cA„sI'f(A„) —A, +—
~

—A, -i =0, (3)

where c =coshL, s =sinhL. This equation can be inter-

preted as a nearest-neighbor coupling which decays ex-

ponentially with L: It thus probably captures the essen-

tial features of pixel coupling mechanisms more general
than its antecedent model, while useful analogies with

coupled-spin models may be anticipated for two-dimen-

sional arrays.
A reversible, area-preserving mapping of the plane

may be derived from (3), e.g., by our setting

lDV'+ V(r) jy=Ey—, ~II An I or D8 2 (An+I An —I ) (4)
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=A &2tanh( ,' L)/P -=rnA (s)

which may be solved graphically, as in plane-wave OB
problems —see Fig. l.

The dynamical stability of these fixed points, or of any
pixel pattern {A„I,is governed by the linear mapping de-
rived from (2). In the (A,B) representation, this map is

given by the matrices

where k = Eand—
T„(k) =2 coshkL Pf '(A„)—sinhkL/k.

The K„act on a perturbation vector and {A„I will be
unstable if there exists any such vector which remains
bounded for all n, for some k & 1. For a fixed point this
requires i T(k) i & 2 for some k & 1. Stable fixed points
thus obey f'(A) m. Thus as in the plane-wave case,
given three fixed points Ai, A, A„, then Ai and A„are
stable, while the middle fixed point A is unstable.

Mapping stability of {A„J under M is also of interest.
The Jacobian of M„ is K„(1), and since K(1) &2 for
dynamically stable fixed points, such points are mapping
unstable, in fact hyperbolic, as illustrated in Fig. 2. A
is mapping stable (a center) for small L, surrounded by
closed orbits. As L increases, however, A loses stability
via a period-doubling sequence. All mapping-stable N-

leading to De Vogelaere maps in the forms analyzed by
Greene et al. Physically, the (A, B) mapping generates
the full pixel pattern p, from its value on the two neigh-
boring pixels, while the (A, D) mapping does so from p,
and its mean slope at a single pixel; I will use the (A,B)
map here.

Uniform pixel excitation corresponds to a fixed point
of the map:

f(A) =A x2(c —I )/sP

periodic sequences {A„f are dynamically unstable, be-
cause mapping stability implies

Tr QK„(k) &2 for k =1,
n 1

and thus, by continuity, for k just bigger than 1, which
implies dynamic instability.

The converse is not true, as noted above for A, but a
restricted result is important: Any orbit {A„j for which

T„(1)&2 for all n is dynamically stable. The argu-
ment is based on the fact that for T„(1)& 2, and a for-
tiori for k & 1, a perturbation vector (g„,ri„) gets
trapped in a sector of the (g, ri) plane in which (g+r12)
is monotonic increasing as n either increases to ~ or de-
creases to —~, or both. The condition T(1)=2 is valid
at points for which f'(A) rn (Fig. 1). All orbits which
never stray into the "instability strip" between these
points are dynamically stable and potentially useful

memory states. Attention is drawn to similarities be-
tween the present problem and Frenkel-Kantorova mod-

els studied, e.g. , by Aubry. to In particular Aubry's
Theorem 4 seems applicable, and since it is easy to show

that g„has at most one sign change for T„(1)& 2, dy-
namic stability (strictly metastability in Aubry s termi-
nology) follows.

The functional requirement of an optical memory is

that it should have dynamically stable states {A„) repre-
senting arbitrary doubly infinite sets of binary digits—i.e., each pixel may be independently set high or low.
Here I present the main results of this paper: useful
lower bounds on pixel separation in such a device, some
links with chaotic dynamics, and conditions on dynami-
cal stability. The derivation uses the physical require-
ment of boundedness of {A„),together with an analogy
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FIG. 1. Graphical determination of the uniform states of
the OB array, given by the intersection with the response func-
tion f(A ) of a line of slope m -P '. The dashed vertical lines

[defined by f'(A) m] delineate the "instability strip" —states
wholly outside the strip are dynamically stable. In the dia-
gram, f(A) = {2+arctan[G(A —1)]l/4.

FIG. 2. Pattern of points generated by the map (5) for the
response function of Fig. 1. Note closed orbits around A 1,
while the other fixed points AI, A are hyperbolic.
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So is a convenient, but not optimal, starting figure for
the generation of S: The "diamond" formed by the Un-

stable and stable manifolds of At and A„, discernible in

Fig. 2, is optimal, since its boundaries contain subsets of
S.

In nonlinear dynamics horseshoe formation is inti-
mately associated with homoclinic tangencies and
chaos", this relates directly to the present problem, since
the above-mentioned optimal condition for stripe forma-
tion is tangency of the stable and unstable manifolds of
At and 3, forming the point defects or homoclinic or-
bits (. . .0001000. . . ) and (. . .1110111), respectively.
The associated theory then guarantees the existence of
periodic orbits of all periods as well as uncountable
aperiodic orbits: This is precisely as required for, and il-
lustrated by, the present model of an optical memory.

Effective optical memory demands that all members
of Z be dynamically stable. As noted above this is

guaranteed if all A„ for each member lie outside the in-

stability strip; this typically yields a minimum pixel spac-
ing similar to that in (5). Conversely all sequences con-
taining a 2 are unstable. 9 Closure of the gap between
these two statements is possible for specific response
functions; such cases as well as detailed justification of
the present arguments will be elaborated elsewhere.

In summary I have demonstrated in a simple case an
intimate connection between optical memory and spatial
chaos. On the one hand, the methods and concepts of
nonlinear dynamics can yield rigorous results for basic
and global features of optical memory function, while on
the other hand the emphasis on mapping-unstable orbits
and the additional question of dynamic stability may

stimulate progress in nonlinear dynamics. (seneraliza-
tion to two-dimensional arrays and to related optical
devices —such as image processors —and perhaps to oth-
er forms of memory device should prove rewarding.
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