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Direct methods have been studied for many years in the context of x-ray diAraction and it is the heavy

atom technique of x-ray crystallography that inspires our approach to the surface problem. The idea is

that we know the bulk structure lying behind the surface, and we can define a "reference surface" as

near to the true surface structure as possible. It is subsequently treated as the "heavy atom" of the sur-

face problem and all phases referred to the reference surface phases. The method is shown to work well

for some simple examples. Future applications of greater sophistication are discussed.

PACS numbers: 68.35.—p, 61.14.Dc, 61.14.Hg

Several powerful techniques exist for the determina-
tion of surface structure. All of them rely to a greater or
lesser extent on trial and error interpretation of experi-
mental data. Surface extended x-ray absorption fine-

structure spectroscopy has some limited possibilities for
direct inversion by Fourier transform to give a radial dis-

tribution function, but the problem of determining the

angular distribution of atoms, or their distribution be-

tween different environments must be solved by other
means.

Low-energy electron diffraction has so far resisted at-
tempts to use direct methods. Nevertheless, it is argu-

ably the most successful technique with the majority of
structures determined by this method. It owes this

power to the very high density of information that the
diffraction process produces: the coordinates of several

independent surface atoms can be found by use of the in-

formation contained in diffraction data acquired over a
range of a few hundred eV. Indeed, it is the very success
of the technique that is forcing our attention back to the

direct methods.
Consider a complex surface structure in which the x,

y, and z coordinates of three atoms are to be determined,
n=9 coordinates in all. For each coordinate we may
wish to try t =5 different values to compare with experi-
ment. This implies a very large number of different
structures to try out,
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=5 = 1.95 X 10 trialS .

Of course things are not quite as bad as this: Some of
the trial structures will correspond to chemically unreal-
istic situations, and once we are close to the true struc-
ture we can home in on the best agreement by a search
strategy for the minimum in the R factor. Nevertheless,
for very large systems we shall ultimately be defeated by
the exponential growth of trials with the number of coor-
dinates exhibited by Eq. (1),which is common to all trial
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where 0 is the phase of &fq. Hence, apart from the usu-

al ambiguity about centro-symmetric crystals, we know

the amplitudes and we can Fourier transform to find the
coordinates.

It is this heavy atom technique which inspires our ap-
proach to the surface problem. The idea is that we know

the bulk structure lying behind the surface, and we can
define a "reference surface" based on the same bulk

structure, and as near to the true surface as our chemical
intuition and other information enables us to guess. This
reference surface is subsequently treated as the "heavy
atom" of the surface problem and all phases referred to
the reference surface phases.

What use are the phases? LEED is recognized as a
multiple-scattering problem and a Fourier transforma-
tion, even of LEED amplitudes, generally giving a jum-
ble of nonsense. Here we introduce the second important

and error strategies. The problem is formally classified
as NP standing for a nonpolynomial dependence on n.

Direct methods have been studied for many years in

the context of x-ray diffraction. The simple nature of x-

ray diffraction theory means that a Fourier transform of
experimental diffracted amplitudes will give the atomic
coordinates directly. Only the intensities are known so

the problem reduces to one of finding the phases. This
can be done either by using sophisticated theorems which

limit the volume of phase space which needs to be
searched, or more traditionally by using the heavy atom
method: A heavy atom is substituted into a complex unit

cell and dominates the diffracted amplitudes, Aoo. Sub-

sequently, coordinates of all other atoms are to be re-

ferred to the position of the heavy atom so that AoG is

chosen to be real. Since the other atoms produce a rela-

tively small change in diffracted amplitude, »G, it fol-

lows that
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6Ag =QTgi8r),
J

so that the change of intensity is

(3)

concept in our approach: Provided that the reference
surface is reasonably close to the real structure the
diffracted amplitudes will change by an amount that is
first order in the atomic displacements. Suppose that we
have a surface in which one of the top layer atoms in the
unit cell is displaced by an amount Br from the reference
surface. The changes in the amplitudes and the displace-
ments will be connected by a tensor

result are largely due to the neglect of the quadratic
term in Sr i [see (4)], whose relative magnitude is energy
dependent. Assuming that these errors are statistical,
the error minimization,
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leads to a system of nonlinear equations
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which by use of (4) is linearized to give
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Additionally we took the quadratic term into considera-
tion by iterating the solution of (10) using

where

Mg, =A pg+Tg&+A pg+Tgj .
J J

(5)

This is the simplest form of the theory and we have ap-
plied it to relaxation of the Rh(110) and W(100) sur-
faces.

For the Rh(110) surface LEED intensities, as conven-
tionally measured and analyzed earlier, ' were evalu-
ated in the energy range 50 to 200 eV for seven beams
symmetrically nonequivalent at normal incidence. Be-
cause of the surface roughness, theoretical and experi-
mental intensities usually differ in their absolute level
and so the experimental intensities were renormalized
beam by beam according to

The accuracy of tensor LEED has been explored else-
where, and several applications to structure determina-
tion have been made. ' Hence we are working with a
well proven concept. It does not take a great leap of the
imagination to realize that if we know IAg I from ex-
periment, and we can calculate Hog and Tgj theoretical-
ly, then BrJ can be found by matrix inversion

Sr, =g(M '))s(I As I

' —
I Ap, I

') .
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when going from step v to v+1. Similarly, the renor-
malization procedure according to (7) was repeated.
The minimization was also extended to find the proper
value of the inner potential. The whole procedure even-

tually gives the final value

Figure 1 displays the result for this iterative process
starting from the unrelaxed surface as the reference
structure. Clearly the iteration converges after only a
few steps to the surface relaxation

(D|2/Dp, D23/Dp) = ( —5.7%, + 1.6%) .

This is close to the result,

(Di2/Dp, Dpi/Dp) =( 6.9%, + 1.9%),

of the conventional R-factor analysis and approaches it
within the usual error bar of LEED results.

We also applied the direct method to the hydrogen

JIA, (&R) I'dz
JS,(~) dZ

(7)
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oo (%)

whereby in a first-step approximation Ag(SR) =As(0)
=Apg was used [8R =(Br|,Bri)]. We then used (6) to
find 6'rj, the displacements of the first two layers of
atoms, assuming that the relaxation is entirely in the
direction normal to the surface. The unrelaxed surface
with the interlayer distance Dp=1.345 A was used as a
reference structure. Only a subset of the intensities is

necessary to define a square matrix M, i.e., a 2x 2 matrix
for a two-layer relaxation &] and 6r2. For different sub-
sets of the measured intensities different values for
6r] =D]2 and 8'r2=D23 result in oscillations about the
correct values known from the conventional full dynami-
cal analysis. The oscillating deviations from the correct
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FIG. 1. Two-layer surface relaxation for Rh(110) as ob-

tained by the direct method through iteration.
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covered surface Rh (110) I x 1-2H. Recently it was

shown that hydrogen removes the surface relaxation to
( —1.3%, +0.2%) whereby neglect of hydrogen scatter-
ing only slightly affects the full dynamical analysis. '

Again the direct method result calculated by neglecting
hydrogen is near the exact result within the usual error
limits as displayed in Table I. The same holds for the
unreconstructed surface of W(100) for whose analysis
measurements taken at 400 K were used.

This straightforward application of the ideas and its
success in predicting a simple structure gives us confi-
dence to develop the method further. The problem is

that the change in amplitude is not linear in the atomic
displacement for large displacements, and the iteration
used above with a constant tensor might hold for small
displacements only. In an earlier paper we showed how

it was much better to define a function of the atomic
coordinates which then proved to be a more linear vari-
able than the bare coordinates themselves. For example,

TABLE I. Comparison of two-layer relaxation results ob-
tained by conventional and direct LEED analysis.

Conventional method Direct method
Surface D i 2/ Do(%) D23/Do(%) D|2/Do(%%uo) D23/Do('%%uo)

Rh(110)
Rh(110)

1 x1-2H
w(ioo)

—6.9

—1.3
—8.2

+1.9

+0.2
0.0

—5.7

—0.8
—6.3

+1.6

+0.9
+1.9

if an atom has scattering factor,

t( (~ =b((b' iexp(2ib() —I],
then translating the atom through a distance Br changes
the scattering by
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where we have written L for the pair (lm) and
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K is the complex wave vector of the electrons, the j's are
spherical Bessel functions, and the Ys are the spherical
harmonics, which in this instance we choose to be real
functions.

If we regard Bt as small we can use perturbation
theory to write the change in diffracted amplitudes as

bag =(kii
I
bt

I kii+gl, (i4)

where the states
I k~~) and

I ki+g) represent the incident
and diffracted LEED states for the reference surface.

After substituting for bt and some considerable re-
arrangement we can write BAg in the familiar tensor
form,

b~g ZTgLL'BLL' i
LL'

where

BLt. =Qrrj j((1(: I br, I ) Y( «(br, ))
J

"j,«I b; I ) Y(m (n(br, )) .

(is)
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o, is the probability of finding a displacement of type j
in the unit cell of the reference surface. Since we have
chosen to define the Ys to be real and the imaginary
part of K is generally very small, then B is a real quanti-
ty. The number of values of L and L' that need to be

i
considered is a function of how large the I br(I's are:
For large i or I' the Bessel function in (16) becomes very
small and effectively cuts off the expansion.

Equation (15) constitutes a much more accurate ten-
sor relationship than does Eq. (3). For the purposes of
(15) we are to regard B as a vector which happens to be
labeled by a double subscript. We can find B by taking a
subset of our data points to make T into a square matrix
which can be inverted. In practice we shall need to take
large volumes of data to produce many estimates of B.

Having obtained the best estimate of 8, now we can
extract the atomic positions. To do this we change our
viewpoint and now begin to regard B as a matrix. Note
that 8 is a sum of separable terms, that is to say it has
the form

BLL' —ZU/L ~'&L',
J

where

UqL =j ((I(: I br( I ) Y(m(n(br, )) .

This implies that 8 has as many nonzero eigenvalues as
there are different values of j. For example, by finding
how many nonzero eigenvalues there are we discover the
number of different types of atomic displacements. We
can go further: Note that there is a sum rule,

sin(KIbr br( I)/(& I br, —br(I ) =Z4&j((&I br, I )Y( (n(br ))j((I('.
I br( I ) Y( (n(br, )) .

lm

The implication is that if the different values of Br are well separated compared with the wavelength of the electrons,
the vectors v form an orthonormal set so that the eigenvectors of B are the vectors vj, and the eigenvalues are o~. From
the eigenvectors we easily infer the positions of the atoms.

What are the limitations? First, we do have to assume that the displacement from the reference structure produces
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small changes in scattering. In practice we have found

through experience of the tensor LEED method that dis-

placements of up to 0.4 A can be tolerated without pro-
ducing large errors. It is possible that some sort of itera-
tive procedure could be used for larger displacements
whereby an inaccurate estimate of the ri's was used to
define a new reference surface closer to the true struc-
ture. We are always free to check the structure we ob-
tain by a conventional dynamical calculation and direct
comparison with the data. The great virtue of the direct
method is that it goes straight to an estimate of the
structural coordinates without having to plod around pa-
rameter space.

Second, our method relies on differences in intensity
between experimental spectra and those for a theoretical
reference surface. Theory is good at predicting peak po-
sitions in LEED, but bad at absolute intensities. Ideally
we should make two experiments: One on a known
reference structure so that the differences could be found
purely from experiment. Dynamical inputs such as the
Debye-Wailer factor, inelastic damping, etc. , have non-
linear eA'ects on the calculated intensities and some
thought has to be given for each system to how the effect
of intensity errors can be minimized.

Despite these limitations we are cautiously optimistic
that direct methods have a valuable role to play in the
future of surface crystallography, and that they will

greatly extend the range of structures that can be stud-
1ed.

K.H. and W.O. want to acknowledge financial support
through Deutsche Forschungsgemeinschaft (DFG).

'P. J. Rous, J. B. Pendry, D. K. Saldin, K. Heinz, K. Miiller,
and N. Bickel, Phys. Rev. Lett. 57, 2951 (1986); P. J. Rous,
thesis, University of London, 1986 (unpublished).

2N. Bickel, K. Heinz, H. Landskron, P. J. Rous, J. B. Pen-
dry, and D. K. Saldin, in The Structure of Surfaces II, edited
by J. F. Van der Veen and M. A. Van Hove, Springer Series in

Surface Sciences Vol. 11 (Springer-Verlag, Berlin, 1988), p.
19.

J. B. Pendry, K. Heinz, W. Oed, H. Landskron, K. Muller,
and G. Schmidtlein, Surf. Sci. 193, Ll (1988).

4W. Nichtl, N. Bickel, L. Hammer, K. Heinz, and K.
Miiller, Surf. Sci. 188, L729 (1987).

W. Oed, W. Puchta, N. Bickel, K. Heinz, W. Nichtl, and
K. Miiller, J. Phys. C 21, 237 (1988).

2956


