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Crumpling and Buckling Transitions in Polymerized Membranes
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We consider polymerized non-self-avoiding membranes fluctuating under constrained boundary condi-
tions. Such constraints prevent the membranes from being crumpled at high temperature and introduce
a tension. Upon lowering the temperature this tension reduces, and vanishes at a transition temperature
below which the membrane assumes a buckled state, Buckling transition points, depending on boundary
conditions, arrange on a line which terminates at the crumpling transition. We study the critical proper-
ties of these transitions by various field-theoretical techniques.

PACS numbers: 64.60.Fr, 68.55.Pr

Polymerized membranes, in contrast to linear chains,
may exist in an orientationally ordered flat phase even at
nonzero temperature. ' The effective phonon-mediated
long-range interactions existing in these two-dimensional
objects can indeed prevent thermal fluctuations from
destroying the orientational order. Recently developed
theoretical models s of polymerized membranes exhibit,
at a finite temperature T=T„a crumpling transition
between such an ordered flat phase and a disordered
crumpled phase. While below T, the radius of gyration

Rg of a fluctuating membrane is proportional to its linear
size L, above the transition a non-self-avoiding free
membrane is completely crumpled with Rg ~lnL. ' In
the crumpled phase the correlation length of the mem-
brane normals g~(T) is finite. This persistence length
diverges as one approaches the transition point. Thermal
fluctuations which drive the crumpling transition also
modify the flat ordered phase; for instance, it has been
recently recognized by Aronovitz and Lubensky that
the fluctuations lead to a nontrivial renormalization of
the elastic constants. In this Letter we extend their work
to include the case of more general boundary conditions
applied to the membrane.

Real polymerized membranes can be submitted to a
large variety of boundary conditions among which the
free case, considered until now, is only a particular ex-
ample. Another interesting example which should be ex-
perimentally realizables is the case of closed membranes,
i.e., vesicles, for which one can vary the internal pres-
sure. In this Letter we consider a somehow idealized sit-
uation of a polymerized membrane which spans a rigid
frame. This is a simple generalization of the free bound-

ary case: A variation in the size of the frame can induce
a homogeneous tension or tangential pressure acting on
the membrane. In particular, we shall see how the con-
straints introduced by the boundary conditions affect the
crumpling transition and how they modify the low-

temperature fIat phase.
Figure 1 summarizes the main results of the paper.

The variable g measures the ratio of the linear size of the
frame to the linear internal size L of the membrane (at
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FIG. 1. The (g, T) plane. The hatched region corresponds
to the buckled state, bounded by the line g=(,~(T) The buck-.
ling transition is obtained by approaching this line for T & T„
e.g. , along the arrow.

T=O without tension). The case of free boundary con
ditions is recovered by our allowing the size of the frame
to vary freely. g then takes its spontaneous value g,~(T),
which is positive for T & T, . We can therefore consider

g,~ as the order parameter for the crumpling transition.
If the transition is continuous, ' one can introduce the
usual critical exponents p and v: (,~-(T, —T)s, T & T,
and &r(T)-(T —T, ) ", T& T, . At the critical point
the membrane is a self-similar object with Hausdorff di-
mension DF (Rg -L '). With constrained boundary
conditions, the sides of the membrane are fixed to a
square frame of side gL. Therefore, the region
& (,~(T) corresponds to stretched membranes.

The conjugate field is the tension f, defined as

f= I/L'(arl'a(), where I is the effective potential of the
membrane. Therefore, f and T —T, appear as the two
relevant fields for the crumpling transition. If for a fixed
temperature T ~ T, the constraint is released (f 0),
the variable g approaches g,~(T) (see Fig. 1 ) as

(—
C.&-f'", T&T, , g-f'", T=T, . (1)

For T & T„ inside the coexistence region
& g,~(T), the polymerized membrane buckles. We ex-

pect it then to be in a nonhomogeneous mixed thermo-
dynamic state, which is a mixture of pure (flat) phases
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with diAerent orientations. For instance, the buckled
membrane could be made out of regions where it is al-

most flat and unstrained, separated by defects or
"domain walls" with high stress. The crossing of the line

(= (,r (T) can be considered as a new transition, which

we call the buckling transition, with a single relevant
field. It is characterized by the exponent 8' of Eq. (1)
and new exponents v', g', and g„' defined by

1..(q)-q "", lhh(q)-q' ", (f=o, (=gal), (2a)

(2b)

The functions I „„' and I qq' are the propagators for
the in-plane (u) and out-of-plane (h) modes'' which

behave as power laws of the distance at (= g,~, and

which decay exponentially with the correlation lengths

g„and gh for () g,~. In contrast with Heisenberg spin

systems, the "primed" exponents in Eqs. (1) and (2) are
governed by a nontrivial fixed point. ' The fact that g„'
is nonzero corresponds to the breakdown of classical
elasticity theory for fluctuating polymerized mem-

branes.
We have computed the critical exponents of the crum-

pling and buckling transitions for a generalized model of
D-dimensional elastic manifolds embedded in d-dim-

ensional space. The model can be solved for arbitrary D
in the limit d=~, and can be studied for arbitrary d in

d=~
2~D(4

D —2

2
4 —D

D =4 —t. 1— d e d, +12
2d, +48 d, +24 2+ dc/12

E

1+24/d,

an t. expansion, with a=4 —D. The upper critical di-

mension D„ is equal to 4 for both transitions. The re-
sults for the crumpling transition exponents at d =~ are
given by

p= —, , v '=D —2, DF=, 8= . (3)
4 —D' D —2'

The results for the buckling transition exponents are
summarized in Table I. They satisfy the following scal-

ing laws: ri„'=4 —D —2rt', 8'=(2 —ri') v'.

We now outline the derivation of these results. ' A
Euclidean set of coordinates cr is chosen so that the rest
membrane configuration Xp(cr) at T=O is Xp(cr) =8
&ccr' (a —1, . . . , d; i =1, . . . , D). The energy of the

configuration X =X(o) is given by '

TABLE I. Critical exponents of the buckling transition.
The E-expansion results hold to first order in e.

2 —(v')

P(X) =„d cr —,
' lco(AX) + —,

'
pp(c), X e,X-S,,)'+ —,

'
)j.,(t),X c),X-a,, )' (4)

where Ko is the rigidity constant and po, A, o are the elastic Lame coefficients.
We first study this model in the d=~ limit for arbitrary D. It is convenient to transform /f through a dummy

(Hubbard-Stratonovitch) integration over an auxiliary field X" to obtain a Hamiltonian P(X,A. 'J) quadratic in X. If
we then split X into its average X„and its fluctuations, we can perform explicitly the Gaussian integration over the
fluctuations. The integration A, ;i may be done by the saddle-point method. As a result, the following expression is ob-
tained for the eA'ective potential I (X,„):

1(X,„)= /i'(X,. „,) ")+—,
' keTdTr In(rcpt' 28;)j."pli) (5)

The subscript SP refers to the saddle point with respect
to X'i at which the expression is evaluated. An uv-cutoA'

A has been introduced to regularize the trace. The equi-
librium configuration X,q with free boundary conditions
is obtained as the extremum of I (X,„). We obtain X,q
=g,qXp(cr), where (,q vanishes above T, and is equal to
(T —T, )~ with P = —,

' below T, The value of the. crum-

pling transition temperature is given by

1 d "~ dq 1

ka T, Dxp" (2rr) q'

The lower critical dimension Di is identified as the one
for which T, vanishes. The result DI =2 holds for d =~;
however, by setting up a renormalization procedure to
first order in 1/d, one can show that DI =2 —2/d
+O(1/d ). The inverse efl'ective propagator is obtained
by expansion of I (X,„) around the equilibrium

t configuratio X,q. From its behavior for T~ T„one ex-
tracts in the usual way the crumpling exponent v and the
HausdorA' dimension DF. For T & T„ the membrane is

at its buckling transition point; we therefore extract from
the inverse propagator behavior the values of g' and g„'
quoted in Table I.

The equilibrium configuration with constrained
boundary conditions is given by X,q=~p(cr) provided

Since I (X,„) is not stationary at X,q, a linear
term will appear in its expansion, yielding the nonzero
tension f. The equation of state relating ( to f for small

f (if we omit regular terms in f) has the simple form,

g =(T, —T)/T, +CT(fg)
where C is a constant. For T approaching T, from
above, we obtain thus g =gf, with g —

t T T,t—
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where y=2/(D 2—). At the transition (-f'i with 8'

given by Eq. (3). Finally, for T(T, and f 0, Eq. (7)
yields the exponent 8' quoted above. From Eq. (7) we

also see that four is the upper critical dimension for both
the crumpling and buckling transitions: above D„=4,
the term on the right-hand side vanishes more rapidly
than f, and thus the regular terms omitted in (7) dom-
inate.

In order to study the properties of the flat phase and
the buckling transition for general d, we can therefore
exploit the t. expansion, with t. =4 —D. We consider
the statistics of fluctuations around a stretched con-
figuration X, =~o, and redefine the coordinates cr so
that L,' =8, o'. We split the small fluctuations
8X X —X, into u and /t modes. Near D„=4 we can
drop irrelevant terms by power counting and obtain the
following expression for the eA'ective Hamiltonian '

y, =(16m') '[d, (A, +p/2)+5Ap], (lo)

where A =(2.+P)/(k+2/), and A„p are the renormal-
ized dimensionless Lame coefficients as in Ref 7. The
free membrane and the buckling transition are described
by the unstable i=0 plane. If we analyze in a standard
fashion the corresponding fixed point, the critical ex-
ponents g' and g„' of Table I can be deduced. " For a
stretched membrane the effective tension f can be ob-

S, = d'a[rou(;+ 2 ~o(&h)'+you;,'+ 2 ) ou, ';], (8)

where u;, = —,
' (cl;u/+ci, u;+cl;h c),h) and the coefficients

xo, po, )to are related to those of Eq. (4) by simple (-
dependent rescalings. Since X, is not necessarily an ex-
tremum of '/ir, a linear term rou;; appears in Eq. (8). By
our neglecting the irrelevant terms, the Euclidean sym-

metry of the original Hamiltonian has been explicitly
broken. Nevertheless, P, is invariant with respect to the
residual symmetry transformations given (for any set of
D vectors A; with d, =d —D components) by the follow-

ing expressions:

h(cr) h(cr)+A;cr',

u;(ir) —u;(cr) —A; h(cr) —,' A;AJc—r'.

The associated Ward identities for the effective potential
are sufficient to prove the renormalizability of P, . We
stress that symmetry does not rule out the iou;; term in

Eq. (8): even if it is not present at the beginning it
would be generated by the renormalization. ' For con-
strained boundary conditions thermal fluctuations will, in

general, introduce tension in the membrane. The theory
of Ref. 7 corresponds therefore to vanishing renormal-
ized i, and hence to the critical theory at the buckling
transition. " The renormalization scheme, analogous to
that in Ref. 7, introduces in addition the renormalization
of 'co. r —ZZ, 1'o/ico. We obtain the corresponding new

exponent function y„given to lowest order by

tained from the inverse propagation I pp„as a conse-
quence of the Ward identities:

where y, is y, evaluated at the nontrivial buckling fixed
point. " The exponent 8' can also be obtained from this
equation if we assume that g

—
g,~ is a regular function of

i. Other buckling exponents can be obtained from scal-
ing relations, whose derivations are not difficul. '

Further work to understand the effects of interactions
and the nature of the buckled state is clearly needed.
The present status of the theory, however, already allows
us to expect a rich thermodynamic behavior of polymer-
ized membranes, making experimental investigations of
these systems all the more urgent. One possibility is to
investigate the polymerized vesicles of Ref. 8, where phe-
nomena which resemble buckling have indeed been ob-
served. '

Service de Physique Theorique de Saclay is a Labora-
toire de I'Institut de Recherche Fondamentale du Com-
missariat a 1'Energie Atomique.

Jt/ore added. —In a recent preprint by J. Arnowitz,
L. Golubovic, and T. C. Lubensky, the authors derive an
extra scaling law: 8'(D —2+ri') =2 —ri' which reduces
the number of independent exponents. Indeed, this rela-
tion can be obtained in the present formalism. '
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'See Proceedings of the Fifth Jerusalem %'inter School, 28
December 1987-6 January 1988, edited by D. R. Nelson,
T. Piran, and S. Weinberg (to be published).
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' were already introduced and com-
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consider the possibility of constrained boundary conditions and
therefore did not explore the unstable direction in the
renormalization-group flow, characterized by 8' or v'. The ap-
parently stable fixed point (Ref. 4) of this reference corre-
sponds, in fact, to the fixed point describing the buckling tran-
sition.

' In fact, the possibility of the crumpling transition for two-

dimensional systems is in itself an evidence for such a nontrivi-

al fixed point, since a Gaussian trivial fixed point would be un-

stable (in D=2) according to the Mermin-Wagner theorem.
'3Details of the calculations will be published elsewhere.
'4The fact that i is proportional to ro in our calculation is an

artifact of the dimensional regularization scheme we adopt.
'~E. Sackmann, private communication.
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