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Nonlinear Focusing of Coupled Waves
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The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of
coupled nonlinear Schrodinger equations. This model incorporates the effects of a coordinate-dependent
external potential and coordinate-independent nonlinearities. A virial theorem is derived, which governs
the nonlinear focusing of these coupled waves. For two light waves in a beat-wave accelerator, the cou-
pling to each other and to the resonantly generated Langmuir wave has a significant effect on the focus-
ing properties of the waves.

PACS numbers: 52.35.Mw, 42.65.Jx, 47.35.+i, 52.75.Di

In the plasma beat-wave accelerator, ' a large-amp-
litude Langmuir wave is generated by the beating of two
collinear lasers whose frequencies differ by approximate-
ly the plasma frequency. The longitudinal electric field
of this Langmuir wave can then be used to accelerate
particles. Since any reduction in laser amplitude results
in a corresponding reduction in the accelerating field, it
is important that the laser beams remain focused as they
propagate through the plasma. For parameters typical
of a proposed beat-wave accelerator, the Rayleigh
diffraction length of the incident laser beams is much
less than the particle-acceleration length and a mecha-
nism for nonlinear focusing is required.

Such a mechanism is the relativistic correction to the
mass of electrons oscillating in the electric fields of the
incident light waves. This alters the nonlinear index of
refraction in such a way that energy accumulates around
local maxima in the wave amplitudes. Previous analyses
of this process have dealt with the steady-state focusing
of a single light wave. Although these analyses have pro-
duced valuable insight into the process of relativistic
self-focusing, they are somewhat incomplete. Since the
electron "quiver" velocity depends on both light-wave
amplitudes, the nonlinear focusing of either wave de-
pends on the amplitude of both waves. Moreover, the in-
cident pulse lengths are so short that the steady-state as-
sumption is invalid. In this Letter, the time-dependent
focusing of nonlinearly coupled light waves is studied
and the effects of a resonantly generated Langmuir wave
are discussed.

Consider a system of light waves whose group veloci-
ties are parallel and of approximately equal magnitude.
In a Lorentz frame moving with the average group veloc-
ity, the spatiotemporal evolution of the wave amplitudes
is governed by the Lagrangian density

application which motivated this paper, t and x are both
measured in units of the collisionless skin depth cto,
the A, 's are the electron quiver velocities divided by the
speed of light, and the potential Q has a specific func-
tional form. However, a more general potential is re-
tained in the analysis: The only restriction on the poten-
tial is that it can be written as the sum of a real external
potential Q„which depends on t and x, and is at most
linear in

~ A, ~, and an internal potential Q;, which is a
real function of

~ A, ~
alone. Application of the Euler-

Lagrange equations to the Lagrangian (I) generates the
coupled nonlinear Schrodinger equations

[la, + —,
' v'+g. (t,x, ~~, ~

')]A.-0, (2)

where Q, denotes 8Q/8 ~ A, ~
. Since the potential func-

tions Q, are real, no energy is exchanged among the
waves and each wave action

is conserved. Additional conservation laws can be de-
duced from the stress-energy tensor

T„" A
elL +A

a,p a,p

—gPL (3)

where the subscript, p denotes 8/8x», and the divergence
conditions

0= [ ,' (VA,*.VA, ) —Q—(t,x, ( A, ~

') ]d x

is the total wave energy, which evolves according to

e„T»-—a„L.
It follows from the temporal components of Eqs. (3) and
(4) that

L, --,' i(~.* a,~.—~.a,a.*)—
—,
' (v~.* v~. )

dt
0= — B,g, d x. (s)

+g(t, x, ~~.~'), (I)

where the canonical variables are the wave amplitudes
A, and A, and, with the exception of Eq. (2), repeated
wave subscripts imply summation. For the beat-wave

It follows from the spatial components of Eqs. (3) and
(4) that

P — (A,*VX,—A,VA,*)d x
1
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is the total wave momentum, which evolves according to

d
dt

P= Vg, d x. (6)

where the remainder term

[2g -Dg, +D(g; —g;. I&. I
')]d'x

These virial equations can be generalized to include

waves with anomalous dispersion.
For two light waves in a beat-wave accelerator, with

associated electron quiver velocities which are only

weakly relativistic, the potential takes the form

g, =o, g;= —,
' A., I~.I'I~, I',

where All and A22 are equal to —,', Alq and A21 are equal

to —,', and the effects of the resonantly generated Lang-
muir wave have been neglected temporarily. It wi11

henceforth be assumed that the incident light waves are
only a few collisionless skin depths wide. This narrow-

wave assumption is appropriate for the beat-wave ac-
celerator and has two important consequences: First, the
waves are unlikely to filament and a discussion of
whole-wave focusing is meaningful; and second, the time
scale for transverse focusing" (which is proportional to
the product of the square of the envelope width and

') is much shorter than the time scale for the lon-

gitudinal modulational instability (which is propor-
tional to I A, I ). Because of this disparity in time

scales, the longitudinal derivatives in the Laplacian can
be neglected when we consider the initial development of
transverse focusing. Suppose then, that the incident
wave envelopes are given by

- i/2
N. (z)

exp
7rp (z) 2p (z)

A, (0,z, r) =

and that D is equal to 2. It follows from the initial con-
ditions and the Ehrenfest equation (6) that P and d, P

Because of the complexity of Eq. (2), attention will be
focused on the temporal evolution of certain spatially
averaged properties of the wave envelopes. In this "mo-
ment" or "virial" approach, the average value (. . . ) of a
physical quantity is defined as the integral fA, A, dDx

divided by the total wave action ¹ For example, the ve-

locity d, (x) of the centroid of the wave envelopes is equal
to P/N. The average width (Bx )'t of the wave en-

velopes is defined as ((x —(x)) )'t . By use of the
Schrodinger equations (2) to replace the time derivatives

cl, A,~*i with terms involving VA,~*' and IA&I, and by
performance of the requisite integrations by parts, it is

not difficult to show that
r 2

d 2 H P
(Sx )-2 2 —— — —(x) —+~,d P

dt' N N dt N

(7)

are both equal to zero, and, from the choice of dimension
and the form of the potential that R is equal to zero.
Only the term 0 contributes to Eq. (7), which reduces to

d 2
, &ar') =, [N —~.~.N,],

dt Np
(10)

where k,p is equal to A,p/27r and the parametric depen-
dence of (br ), N„and p on z has been suppressed for
simplicity of notation. By virtue of Eq. (5), H is con-
stant. It follows that the envelope width will collapse to
zero on a finite time whenever H is negative. This col-
lapse is an artifact of an idealized physical model, but is

a useful numerical diagnostic because the onset of non-

linear focusing is independent of the physical mecha-
nisms which limit nonlinear focusing. Notice that waves
which do not focus by themselves will often focus be-
cause of their collective interaction. If we assume that
the critical power is exceeded, Eq. (10) can be integrated
to determine the collapse time t, For w. ave envelopes
with no initial divergence,

t, p [N/(X, pN, Nt7
—N)]'t .

For a single light wave, the critical value of N(z),
above which the wave envelope will collapse, is equal to
167r. In physical units, this corresponds to a critical
power of 1.7&&10' (cot/co, ) W, in agreement with Refs.
2. However, it should be emphasized that only those
portions of the wave for which N(z) is greater than N,
will collapse; the other portions of the wave will disperse.
This invalidates the steady-state assumption of Refs. 2,
which requires the wave to collapse or disperse as a sin-

gle entity. For two copropagating light waves, the non-

linear coupling reduces the critical power required in

each wave by a factor of 3. It should be emphasized also
that Eq. (11) refers to the collapse time which would be
observed in the group frame; the plasma-frame collapse
time is longer than the group-frame collapse time by a
factor of cot/m, .

The predictions of virial theory were tested by our
solving the relevant two-dimensional Schrodinger equa-
tions numerically. For the cases described in the
preceding paragraph, the negativity of H was found to be
a sufficient condition for the transverse collapse of the
wave envelope. The time taken for the development of a
singularity in the wave amplitude was of the order of,
but less than, the predicted collapse time (11). This is

because, in a typical collapse, not all of the wave action
is localized near the singularity. After the singularity
has occurred, the assumptions made in the derivation of
the virial equation (10) break down. No predictions can
then be made, based on the initial conditions, regarding
the fate of the wave action not localized near the singu-
larity.

Now consider the evolution of two waves whose cen-
troids (x), are separated by a finite distance. In Fig. 1,
snapshots of IAi I

are displayed for several values of
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(b)

stronger: Their centroids merge and they subsequently
evolve as a single entity. This process is known as en-
trainment. By the end of the numerical simulation
shown in Fig. 1, the width of the wave envelopes exceeds
that of the simulation box and further numerical evolu-
tion is inappropriate. However, numerical simulations
with larger boxes show that the waves continue to
disperse.

If the waves had been coincident initially, their coin-
bined action would have exceeded the critical value for
collapse. One is therefore led to ask how large the initial
separation can be without suppressing the tendency of
the waves to collapse. By evaluation of the integrals in

the virial equation (7) for two waves with partially over-

lapping Gaussian envelopes, a variant of Eq. (10) is ob-
tained in which the interaction terms are reduced by a
factor of exp[ I (x)1 —(x)2 I /2p ]. For two light waves of
equal intensity, the criterion for entrainment and col-
lapse simplifies to

I (x)l —(x)2 I
~ pj21n l2N/(3N, —N)]j ' 2, (12)

(c)

FIG. 1. Snapshots of
I A| I

t for several values of the elapsed
time; the corresponding snapshots of

I A2 I can be inferred by
reflection in the center of the simulation box. Each dimension-
less wave action is equal to 33 and the initial separation of the
wave centroids is equal to 2.2p, where p is the Gaussian scale
length of the wave envelopes. (a) t=0; (b) t =45; (c) t =90.

where N, denotes the critical action for two coincident
waves. For two light waves whose action is equal to 25,
virial theory predicts a tolerable separation of approxi-
mately 1.2p. In Fig. 2, snapshots of I A| I

are displayed
for several values of time, for an initial separation of
l. 1p. Because the waves are not well separated initially,
the entrainment process is less dramatic than in Fig. 1.
However, the waves do collapse. This verifies the
sufficiency of condition (12). The robustness of coupled
nonlinear focusing with regard to small laser misalign-
ments could be important in experiments.

As the incident light waves propagate through the
plasma, the component of the ponderomotive force at
their beat frequency drives a Langmuir wave whose am-
plitude grows smoothly from the front of the light waves
to the rear. Energy is then transferred from the in-

cident waves to their sidebands by repeated stimulated
Raman scattering. A major deficiency of the Schro-
dinger-equation model is its failure to account for these
processes self-consistently. However, in the spirit of
Joshi, Clayton, and Chen, one can estimate the
Langmuir-wave amplitude A~(x) for given incident
pulse shapes. The focusing effects of the Langmuir wave
can then be modeled by the inclusion of an external po-
tential

the elapsed time; the corresponding snapshots of IA2 I

can be inferred by reflection in the center of the simula-
tion box. Each wave action is equal to 33 and the initial
separation of the wave centroids is equal to 2.2p. Initial-
ly, the waves are well separated and there is little in-
teraction between them. Since neither wave has enough
action to collapse by itself, both waves begin to disperse.
However, as the waves disperse, their spatial extent in-
creases and the interaction between them becomes

in the virial equations (7) and (8). Such an analysis
showns that near the front of thc light ~aves, the Lang-
muir wave is of small amplitude and has little effect on
the focusing of the light waves. In contrast, near the
rear of the light waves, the Langmuir wave is of large
amplitude and significantly enhances the focusing ten-
dency of the light waves. Since the virial equation (10)
is valid for an arbitrary number of waves, one can also
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the relativistic nonlinearity is saturable, although its
form is unknown for systems of coupled waves. Second,
the parametric decay of the constituent waves provides a
potentially important energy "sink" and can produce
steep transverse gradients in the laser intensities which
enhance diffraction. " Third, the expulsion of plasma
particles from the laser filament due to the pressure of
the laser light must cease once vacuum conditions have
been attained. ' The collapse criteria (10) and (12)
should therefore be regarded as criteria for the initial
occurrence of relativistic focusing, and the collapse time
(11) should be regarded as an estimate of the time scale
on which higher-order nonlinearities or other physical
processes become important.
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FIG. 2. Snapshots of
~
A ~ ~

for several values of the elapsed
time; the corresponding snapshots of

~
A2 ~

can be inferred by
reflection in the center of the simulation box. Each dimension-
less wave action is equal to 25 and the initial separation of the
wave centroids is equal to 1.1p, where p is the Gaussian scale
length of the wave envelopes. (a) t 0; (b) t 20; (c) t =40.

model the effects of resonant energy transfer from the in-
cident waves to their sidebands. By use of the potential
(9), and the result that the self-nonlinear coefficients
A„are all equal to —,

' and the cross-nonlinear
coefficients A,~ are all equal to 4, it is easily shown that
the tendency of the light waves to focus is not reduced by
any assumed redistribution of electromagnetic energy.
An independent study of these effects has been made by
Gibbon and Bell. ' It should also be remarked that
there are at least three mechanisms which prevent the
occurrence of singularities in the wave amplitudes. First,
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