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Formal Scattering Theory Approach to S-Matrix Relations in Supersymmetric Quantum Mechanics
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Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain rela-
tions between the S matrix and its supersymmetric partner. These relations involve only asymptotic
quantities and do not require knowledge of the dynamical details. For example, for coupled channels
with no threshold differences the relations involve the asymptotic normalization constant of the bound
state removed by supersymmetry.
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Recently, supersymmetry in nonrelativistic quantum
mechanics (SSQM) ' has been used to derive S-matrix
relations for potential scattering. We extended this
method to coupled two-body channels and obtained sim-

ple relations between the S matrix and its supersym-
metric partner in the case where the channels are dis-

tinguished by different threshold energies. In this

Letter we obtain general S-matrix relations in SSQM.
We develop a more powerful formal scattering theory
methodology than we used and hence this work is not a

simple extension of our previous work but rather sub-

sumes it. Our new results relate the S matrix to its su-

persymmetric partner entirely in terms of asymptotic
quantities. We derive relations among supersymmetric
partner S-matrix elements without recourse to dynami-
cal details.

Since the supersymmetric partner Hamiltonian (as we

consider it here) does not have the lowest bound state of
the original Hamiltonian, the relationship among the S-
matrix elements must remove the corresponding 5-
matrix pole. In the coupled-channel case that pole is dis-

tributed over all the S-matrix elements with residues

proportional to the asymptotic normalization of the
bound state in the appropriate channel. Therefore, the
relation between the S matrix and its supersymmetric
partner contains both the bound-state energy and those
asymptotic normalization constants.

Consider a matrix Hamiltonian, H, coupling n two-

body channels. After partial-wave decomposition the
Hamiltonian (h =2m =1) for the radial Schrodinger

equation can be written

H d /dr +—V,

with the usual form for the A —'s

~ d/dr+ W, (3)

where W is an nxn matrix. The superpotential W can
be constructed from y| and the n —1 linearly indepen-
dent solutions y, (j 2, . . . , n) of

that are regular at the origin but grow exponentially at
large r. Defining

+ = (F1' Y2» Ãn )

as an n x n matrix with rows made from the column vec-
tors yi we can take

W=% '+ (6)

(prime means differentiation with respect to r) and we

will obtain the Hamiltonian H from Eqs. (3) and (6). It
can be shown' that W is Hermitian although this may

where V contains appropriate centrifugal terms, we

suppress the angular momentum label I, and we assume
all channel masses to be equal. If the lowest-energy
bound state of H, assumed to exist, is yi with energy ei-

genvalue —B, one can write 0 in factored form

(2)
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not be obvious from Eq. (6).
The supersymmetric partner Hamiltonian

the intertwining property,

Hn~ =n~Hp (16)
H=A 8+ —8

has the same spectrum as H except for the lowest bound
state and the unnormalized solutions of H for energy E,
y, are given by

= & ~&in/out ~ (9)

where the p;„and the p,„t are free states with the incom-
ing or outgoing parts properly normalized or, in the
language of Newton, " "controlled. " In terms of the
wave operators, the scattering operator is given by

S=A —0+t (io)

and the radial S-matrix elements in our partial wave, I,
by

S(k) =«oui, l I
&'-&+

I v n, ~&,

where k is related to the scattering energy by E=k .
We require that y the corresponding scattering solu-
tions at energy E of H be normalized so that asymptoti-
cally they have the appropriate incoming or outgoing
spherical wave. For the normalized y

—we write

pE 2 l/lp .

Normalizing y to the proper asymptotic state is an im-

portant aspect of obtaining the S-matrix relations. We
want to relate the S matrix of H, S, to that of H, S, in a
given partial wave in the framework of formal scattering
theory. " The scattering states of H are given in terms
of the Moiler wave operators, 0 ~, by

and where Hp is the asymptotic form of H. Now taking
matrix elements of S between free states [the appropri-
ate in or out eigenstates of Ho as in (11)] and using
k +(W ) =k +8, B=K we obtain a set of equiv-
alent forms

S(k ) = ( —i k + W )S(k ) (ik + W )

=(ik+W ) 'S(k)( —ik+W )

(i7a)

(i7b)

=(ik+W ) '(k +8)S(k)(ik+ W ) ' (17c)

=(ik+ W ) [S(k)l(k +B)1(—ik+ W ) . (17d)

These results apply equally well to single-channel
scattering and to coupled channels with threshold energy
diA'erences where the diagonal matrix k must be replaced
by the diagonal matrix of appropriate wave numbers and
where we have already proven that W is diagonal. '

Hence Eqs. (17) subsume the work of Refs. 2-5. Equa-
tions (17) are the central results of this work.

These results can also be obtained less formally by
looking directly at the asymptotic form of the scattering
wave function

y(k) =ye '""—S(k)ye'"",

where p is a constant column vector in the channel space
representing the preparation or "controlling" of the in-
coming state. The supersymmetric partner scattering
state is given asymptotically by

i'(k) =A:y(k)
& + (A ~ + ) &in-out k ~ (i2) =(ik+W )pe ' ' —( ik+W—)S(k)pe' ", (19)

where A = ~ is given by Eq. (3) with W replaced by its
asymptotic form, and the plus-minus sign means that it
acts only as the in-out part of the free state, the part that
must be recontrolled asymptotically to undo the eA'ect of
the 3 . The asymptotic superpotential W is an n x n

constant (independent of r) matrix with the property
that W =B.

Equation (12) defines the supersymmetric wave opera-
tors as

n~ =A n~(A:~) (i3)

S=(A+ ) 'n' (H+B)n (A: )

=(A+ ) -'(H, +8)S(A:,) -', (is)

where in going from the first to the second line we used

and the partner scattering operator as

S=npn+ =(A+ ) 'n A+A 0+(A +) '. (14)

To obtain this last result we used (A ) =A+. From
Eq. (2) we have

where A = —djdr+W . To read off S we need to
find the coefficient in the outgoing wave of the prepared
state. We cannot simply divide through by ik+ W as if
it were a normalization constant since it is, in fact, a ma-
trix and the result of that division would not be an
asymptotic state of H. Rather we write

y(k) =(ik+W )pe '""—( —ik+W )S(k)

x(ik+W ) '(ik+W )pe'"". (2o)

From which we obtain S, the coefficient of the controlled
state, in one of the equivalent forms of Eqs. (17).

It is trivial to see from (17) that S is symmetric and
unitary if S is also. The only unsettling feature of Eq.
(17d) is that it appears to give S a double pole at
E = 8(one from the explicit—factor and one from the
pole of S) while S is supposed to have no pole at all. We
shall prove that this double pole is exactly canceled by
the two factors of —ik+ W . For the one-channel prob-
lem where W = —K, K =B, it is clear that the factor
of ( —ik+K) = —(k —iK) exactly cancels the double
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pole in the upper half plane leaving S with no such pole.
A corresponding proof follows in the case of coupled
channels with threshold difference.

To proceed we need to calculate 8' in the case of no
threshold differences. In that case we have for the
asymptotic form of the 9' of Eq. (5),

(
—Kr~ e Kr~ e Kr~ ) (21)

where the y; are constant (independent of r) column
vectors. The constants in pi are the asymptotic normali-
zation constants of the bound state in the various chan-
nels. We can prove' that the pi (j=2, . . . , n) are or-
thogonal to pl. Since the p2, . . . , p„are linearly in-

dependent, they can be orthogonalized.
The fact that the p 's are orthogonal yields a very sim-

ple form for the 4' from which we calculate W and
obtain

W -+'e
=K —M'(e x"y,0, . . . , 0)e
=It(1 —2P, ), (22)

S(k) = —[k+iK(1 —2P|)1 [S(k)/(E+8) j

x [k+iE(1 —2P|)], (23)

where Pi is the projection operator onto the vector pi.
This form for 8' is clearly Hermitian, and satisfies
W =8. We can now write our S-matrix relation (17d)
as

means rather that we have a singular potential in H.
We have shown that by combining supersymmetric

quantum mechanics with the methods of formal scatter-
ing theory, one obtains simple relations between the S
matrix and its supersymmetric partner involving only
asymptotic quantities. For the single-channel case and
for the case of coupled channels with threshold energy
differences these relations were derived before use of less
general methods. In the case with no threshold
differences the relations between the S matrix and its su-

persymmetric partner involve not only the value of the
binding energy of the lowest-energy bound state, re-
moved by supersymmetry, but also the asymptotic nor-
malization constants (or S-matrix pole residues) of that
state. Our results are of interest as an extension of
SSQM to coupled-channel scattering. They may also
have interesting applications as they can be iterated and
inverted to give expressions for S in terms of an S of a
possibly simpler problem. For example, S may be diago-
nal while S is not. We are examining an application to
the coupled I =0 and I =2 waves of the deuteron.
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Theorique is a laboratory associated to CNRS.

(24)Sr,i, =Pi/(E+8) .

The contribution of that pole in S to S is found by sub-

stituting (24) in (23):

S-~i,"= P i (k —i' ) /(E —+8) (2S)

which clearly has no pole in the upper half plane.
It may also seem strange that at high energy where

one expects S to go over to unity, Eq. (23) gives S = —1.
This arises from an extra centrifugal term in H at small
r that has the effect of raising the value of the orbital an-

gular momentum quantum number, I, by one and giving
a corresponding extra phase shift of x/2. This does not
mean that S and S correspond to different I; they do not,
as the entire analysis given above was carried out after
the partial-wave decomposition had been done. ' lt

which expresses S in terms of S, the energy of the lowest
state of H, K =8, and the asymptotic normalization
constants of that state, which are in Pi. Thus the S-
matrix relation (23) contains only physical asymptotic
quantities.

To see that the pole of S at E = —B is removed in S
we note that the residues of that pole of S in the various
channels are just proportional to these same asymptotic
normalization constants. Hence the pole part of S can
be written as
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