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Observation of Berry's Geometrical Phase in Electron Diffraction from a Screw Dislocation
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The equations which govern high-energy electron diffraction in a deformed crystal lattice are shown to
be equivalent to a Schrodinger equation with a time-dependent Hamiltonian. If the lattice planes are
not strongly distorted, as in the long-ranged strain field of a dislocation, this time variation is slow and
adiabatic theory can be used. The effects of Berry's geometrical phase are then observed in the bending
of two-beam diffraction fringes as a screw dislocation is crossed.

PACS numbers: 61.14.Dc, 03.65.Bz

A great amount of interest has been generated by
Berry's discovery' of a geometrical phase factor associat-
ed with the adiabatic transport of a quantum system
around a closed circuit in some parameter space. A
number of experiments have been reported which
demonstrate the effects of this phase, including observa-
tions on photons, neutrons, nuclear spins, and molec-
uler energy levels. Here we show that the equations
which govern high-energy electron diffraction from a
continuously deformed crystal can be expressed in the
form of a time-dependent Schrodinger equation whose
Hamiltonian varies as the lattice planes bend. In weakly
deformed regions this variation is slow and adiabatic ap-
proximations can be used. The resulting diffraction pat-
terns provide a particularly straightforward and graphic
demonstration of Berry's phase, and a first observation of
the phase for electrons.

The system we consider is shown in Fig. 1. A screw
dislocation with Burger's vector b is threaded through
the center of a thin crystalline slab of thickness t. The
surfaces of the crystal lie in the planes z = —t/2 and
z =t/2 and the fast electrons, with wave vector k, are in-

cident nearly parallel to z. If the dislocation lies along a
diad, with a second diad perpendicular to this (as in

graphite, see below), the long-ranged displacement field
becomes Ar (b/2tt)tan '(z/XR), where R is the dis-
tance, parallel to the surface, from the core and X is an

anisotropy parameter. The diffraction is governed by
the Howie-Whelan equations, which can be expressed in

the form

the crystal, takes the place of time.
Two beam -approximation —Only waves correspond-

ing to reciprocal-lattice vectors 0 and g are included. Ap
and A represent the amplitudes of these waves, so that
the total wave field becomes An(z)e'"'+As(z)e' "+s '.
Equation (1) then describes the dynamical coupling be-
tween the straight-through and diffracted waves. For
simplicity we assume that g lies in the plane of the speci-
men (symmetric Laue geometry), and parallel to b. The
two-beam approximation is valid for relatively weak
diffraction situations where the electrons are incident
close to the Bragg condition for only one g. The devia-
tion away from the exact Bragg condition at K= —g/2
is described by W=g (K+g/2), where K is the trans-
verse component of k.

Deformable ion approximation —In a .perfect crys-
tal U is the gth Fourier component, Ug, of the periodic
potential. If the crystal is deformed with a displacement

ig Ar

Uelg LLf Ap
2lk

d

A number of standard approximations in electron
diffraction theory are made in the derivation of (1).

Forward-scattering approximation. —This is an ex-
cellent approximation at the high energies (& 100 keV)
considered. It reduces the time-independent equation
which governs the diffraction to an equation which is
first order in z and leaves (1) in the form of a time-
dependent Schrodinger equation where z, the depth in

zg

FIG. 1. The diffraction geometry. The distortion of the lat-
tice planes is shown for a number of columns on the far side of
the dislocation. On the near side the distortion is similar but in

the opposite direction.
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field hr(r) then at each point the crystal is taken to be

perfect, but with a shift of origin which gives rise to an
extra phase factor exp( ig—.hr) in Us. This approxima-
tion is valid provided g. h, r is a slowly varying function of
r, which is the case away from the dislocation core. We
ignore any effects of absorption, and so U in (1) is real
and positive.

Column approximation. ' —Although z is a dynami-
cal variable in (1), R is not and only appears as a param-
eter. The crystal is imagined to be divided into columns
at different distances R from the dislocation core. Each
column is assumed to be sufficiently wide for it to scatter
independently of the others, while being narrow enough
for the displacement to be constant across its width. As
above, the column approximation is valid for slowly

varying displacement fields. The bending of the dif-
fracting planes at various values of R is sketched in Fig.
1.

Neglect of surface relaxation and twisting —The e. x-

pression for h, r is valid in an infinite crystal and is as-
sumed to remain so in a thin slab. Graphite is a suitable
material for experimental work because dislocations with

b in the basal plane can be observed running through
specimens with large areas of uniform thickness, where
the surfaces cannot twist in response to the strain.

Our aim is to calculate the difl'racted intensity,
~ As ~

as a function of 8' and R for various values of U, g b,
and t. This information can be observed in a single
large-angle, dark field, convergent-beam electron dif-
fraction pattern ' of the type shown in Fig. 2(a). As in

a standard convergent-beam pattern, each point repre-
sents the diff'raction into the chosen reAection g from a
diff'erent incident orientation, but because the electron
beam is focused either above or below the specimen, each
point also arises from a diA'erent part of the crystal. In
the present case, the real and reciprocal-space aspects of
the pattern separate out because two-beam diA'raction

depends only on the component of K parallel to g, while

the curvature of the planes varies only in the direction
perpendicular to b and g. The fringes observed in Fig.
2(a) therefore reflect the variation of diffracted intensity

iy/2
1 ~ x

( 2+ p2) 1/2
+iy

C-(8) = '
e ' 1T

( 2+ 2) 1/2

' 1/2

with corresponding eigenvalues + —,
' (x +P )'/2. The

phase y arises from the parallel-transport condition and
is given by

1 X ? 8

)(8)=--
( 2+ p2) ~/2 J —

1

where the overdot represents diA'erentiation with respect
to 8. Equation (2) is essentially identical to the spin- —,

system considered by Berry, " with (3) representing the

geometrical phase. There are, however, two significant
diA'erences. First, 8 runs over a finite interval, and so the
change in the Hamiltonian cannot be truly adiabatic,
i.e., infinitely slow. Our "time" dependence appears only
in p, in the combination 8/y, and so 1/y acts as a slow-

(3)

with incident orientation (i.e., W), while along their
length they move in real space (i.e., R) across the crys-
tal. A screw dislocation with b= —,

' a[1120) runs hor-

izontally through the center of Fig. 2(a). The main
feature of interest here is the bending of the two-beam
fringes as the dislocation is approached. We will see that
this phenomenon has a straightforward interpretation in

terms of the geometrical phase. The interesting struc-
ture nearer the core has also received attention' but
here the planes are bending too rapidly for an adiabatic
approximation to be useful.

The substitutions p =Ut/2k, x Wt/2k, y =2K,R/t,
and 8 =2z/t bring (I) into a dimensionless form

x pe" ~o d ~o
(2)

Pe ' —x &s, d8

where ?t?(8) =(g b/2z)tan '(8/y) and where 8 runs
from —1 to 1. The instantaneous, parallel-trans-
ported"' eigenstates (Bloch waves, in electron
diffraction theory) of this Hamiltonian are

' I/2
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FIG. 2. (a) Large-angle (1120) convergent-beam diffraction pattern from graphite. The bright field disk encroaches on the left
of the pattern. (b), (c),(d) Computed diffraction patterns, calculated with use of exact equations, simple adiabatic approximation,
and modified Bloch-wave theory, respectively. x runs horizontally and y vertically; the arrows mark the positions of the lines x =0
and y =0. See text for details.
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tan '(1/y) . (4b)

y therefore causes a y-dependent shift of the two-beam
fringes, observed as a fringe bending in Fig. 2(c). Com-
parison with Fig. 2(b) shows that the adiabatic approxi-
mation fails both near the dislocation core (y small) and
near the Bragg condition (x small). In both these cases
off-diagonal terms cannot be ignored. ' Away from
these regions the adiabatic expressions (4) provide an ex-
cellent approximation to the exact result and we con-
clude that the bending of the subsidiary fringes as the
dislocation is approached is a direct consequence of the

ness parameter. ' As y increases away from the disloca-
tion core, the planes curve less (Fig. 1) and the Hamil-
tonian varies increasingly slowly. Second, the relative
phase of the two eigenstates is observed, rather than the
separate phase of each. This follows from the boundary
conditions at the entrance surface (8 = —1), where
80=1 and AN=0. A superposition of the two eigen-
states is therefore created; in the adiabatic limit these
propagate with equal and opposite dynamical and
geometrical phases before giving rise to diffracted beams
at the exit surface. Because the relative phase is ob-
served it is not necessary for the path taken by the Ham-
iltonian to be closed. It does close at special values of y,
when the total change in p, Ap, is a multiple of 2tr. This
occurs when 1/y tan(2ntr /g b), in which case the
geometrical phase (at 8=1) becotnes

1 2nxx
2 (x'+p')'"

This agrees with Berry's' solid-angle rule for calculating
y; our circuit corresponds to moving n times around
a sphere on a line of latitude at an angle cos '[x/
(x +P ) 't ] from the equator. In the present case these
closed paths are not special; the diffraction is calculated
for all values of y.

In order to have an exact result with which to compare
different approximations we have numerically integrated
(2) for g b/2+=2 and p=2.85, with x and y extending
over ranges —25 to 25 and —4 to 4, respectively. The re-
sult is shown in Fig. 2(b) and shows good agreement
with the experimental micrograph [Fig. 2(a)]. Small
differences are probably due to the dislocation being a
little off center. ' The bending of the two-beam fringes
due to the long-ranged strain field is clearly seen. In the
lowest-order adiabatic approximation we let the ampli-
tude of each eigenstate remain constant. The resulting
diffraction is identical to the standard two-beam case,
but with the geometrical phase (3) adding to the dynam-
ical phase. The diffracted intensity becomes

2 sin'[(x '+p') 't'+ y] (4a)
x +p

where

geometrical phase y. Interestingly, these results are far
from new in electron diffraction theory. The phe-
nomenon of fringe bending has been understood for some
time, ' while the phase factor [(3) and (4b)] appears
first to have been derived by Howie' and is discussed by
several other authors. ' The connection with Berry's
work is, however, new.

The electron diffraction literature provides other
methods for the analysis of (2) and it is interesting to
reexamine these in the light of the results presented here.
One of the most useful approximations is the modified
Bloch-wave theory. ' Here we apply the unitary trans-
formation

e "' 0 ~0
ittt/2

8,

to (2), yielding

x

2, P

p Ap

—x+j, As dO, A, ,
(5)

In the adiabatic limit, (5) has no geometrical phase (the
Hamiltonian is real) and the off-diagonal, nonadiabatic
terms are proportional to jti, while for the original Hamil-
tonian they are proportional to p. In other words, the er-
ror in making an adiabatic approximation now lies in ig-
noring the curvature of the diffracting planes rather than
their slope. ' The phase now appears to be entirely
dynamical in origin and for the two eigenstates (i.e.,
modified Bloch waves) is given by

r 1

de[(x —j)'+p'] '" (6)

The transformation leading to (5) is not of the type con-
sidered by Berry' in setting up an adiabatic iteration
scheme because it is not based on the parallel-transport
rule. Also, p does not go to zero at the boundaries, and
so the initial eigenstates of (5) are different from those
of (2). The connection with Berry's work can, however,
be seen if we expand the integrand in (6), assuming that
p is small. To lowest order (6) reduces to the argument
of the sine in (4a), while the first correction agrees with
that in Berry's' Eq. (45). The adiabatic approximation
to (5) gives the diffraction pattern shown in Fig. 2(d).
The improvement over the simplest adiabatic result [Fig.
2(c)] is considerable; indeed differences with the exact
result are apparent only very close to the dislocation
core.

In conclusion, we have shown that electron diffraction
provides a particularly clear demonstration of the
geometrical phase. For simplicity we have concentrated
on the special case of a screw dislocation in the center of
a specimen, but a similar analysis can be applied to off-
center screw dislocations, other sorts of dislocation, and
indeed any lattice defect which induces a long-ranged
strain field. The phase y which appears in (4) is depen-
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dent on the total change of structure factor phase, hp,
which occurs in crossing the crystal. Provided the
diffracting planes do not return to their original position
at the exit surface of the crystal A4 will be nonzero, lead-
ing to a nonzero geometrical phase and diffraction effects
of the type discussed above.

We would like to thank J. Hannay for helpful discus-
sions and S. McKernan for help with image processing.
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