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Diff'raction Patterns from Thin Hexatic Films
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On the basis of a "spin-wave" analysis of coupled hexatic layers, we propose a form for the diff'raction
patterns from thin liquid-crystal films. We note that the deviations from "two-dimensional behavior"
observed in recent experiments on films of a few layers can in fact be used to extract the effective hexatic
Frank constant, and to probe its temperature dependence. Our predictions are found to be quite con-
sistent with the experimental observations.

PACS numbers: 64.70.Md, 61.30.Gd, 64.60.My

The elegant theories of defect-mediated transitions'
provide an interesting scenario for the melting of two-
dimensional crystals. In particular, they predict an in-

termediate phase with quasi-long-range orientational or-
der, but no translational order: the hexatic How. ever,
observation of the crystal-hexatic-liquid sequence in ei-
ther experiments or simulations has proved contro-
versial' —the hexatic phase can be preempted by a direct
discontinuous melting transition. Birgeneau and Litster
have observed that certain liquid-crystal phases can be
regarded as three-dimensional stacked hexatic layers.
The coupling of layers in the third dimension, however,
endows them with true long-range orientational order,
and changes the nature of the corresponding transitions.
However, by looking at successively thinner films of such
liquid crystals one may hope to approach the two-
dimensional limit, and indeed recently several groups
have been engaged in such a pursuit.

Diffraction studies of freely suspended liquid-crystal
films may indeed provide the most accurate and
cleanest probe' of the two-dimensional melting se-
quence. The diffraction pattern is isotropic in the liquid

phase, but acquires a sixfold symmetry in the hexatic
phase. In the latter, the 6nth Fourier component of the
angular structure factor is given by ' C6„Re(y6),
with the orientational complex (two-component) order
parameter y6(r) =tlroe ' ', where 8(r) is the angle be-
tween the "bonds" and some reference axis. Using elec-
tron diffraction, Cheng et al. " recently studied films of

n2
two to six layers. For two layers, they found C6„=C6,
as expected from two-dimensional scaling. ' However,
there remain two obstacles to further progress: One is
the problem of extracting the behavior of interesting pa-
rameters (such as the hexatic stiffness, or Frank constant
K~) from the diffraction data. The other is to account
for the observed deviations from the expected two-
dimensional behavior in films of only four or six layers. "

Cheng et al. " fitted their diffraction patterns by
C6„=C6", with cr„=n +A.n (n —

1 ). This form was
theoretically suggested on the basis of expansions about

four dimensions, and is expected to hold only in the vi-

cinity of the transition. It accounts very well for thicker
three-dimensional films with a value' X 0.3. When
forced to fit the data on thin films, k becomes tempera-
ture dependent, and decreases to values smaller than 1

(a„(n ) with increasing number of layers. " Thus it
appears that even with four layers, describing the
diffraction patterns requires a better understanding of
the interlayer couplings. In this Letter we present a
"spin-wave" (or harmonic) analysis of coupled hexatic
layers that resolves the two problems posed earlier. The
origin of deviations from the pure two-dimensional be-
havior' (a„=n ) is attributed to the difference in fluc-
tuations in the different layers. We propose that the
diffraction patterns from I layers should be fitted by
C6„=+,'-1 exp( A;

' n —)/I, where the sum contains l/2
(even l) or (l+1)/2 (odd l) independent terms (as

At —';+1). Furthermore, since the coefficients A;t'

are related to only three independent parameters, there
are internal consistency checks for films of more than six
layers. One of these three parameters is the Frank con-
stant Kz, which is expected to have interesting critical
behavior at both the hexatic-to-solid and hexatic-to-
liquid phase boundaries (according to the theories of
defect-mediated transitions ). Far away from both tran-
sitions, our theory predicts that the results for films of
different thicknesses are all determined by the same
three parameters. Our preliminary checks indicate that
the observed patterns" are quite consistent with these
predictions. Therefore it appears that explaining the
"departure from two-dimensional behavior" can actually
provide much valuable information about two-
dimensional phase transitions. These results are also
relevant to other realizations of two-dimensional quasi-
long-range order.

In two dimensions, the fluctuations in the amplitude

yo of tit6 [which led to the result o„=n+Xn(n —I)] are
negligible, ' and we set yp=1. For a film of l layers, we
denote the angle at site r on the ith layer by 0;(r). If we

ignore topological defects, the energy cost of slowly vary-
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ing fluctuations is described by the effective (spin-wave)
Hamiltonian

sc I —
1

PH= I d r g(V8)'+ —g(8+) —8)' . (1)
i=] 2 i=i

K& is the effective Frank constant in each of the layers,
while J measures the interplane coupling. Since we are
dealing with a Gaussian theory, the normalized Fourier
coefficients of the diffraction intensity are given by

calculated from Eq. (4). For the zeroth mode

d q 1 1 L
ln(2')' Kpq' 4«~ (6a)

(2) "dq 1

(2~)' Kp q'+4 Jsi n'(mz/2l)

where L/a is the size of the system in units of molecular
distance a. For the other modes

I

C,„=—g(e ' )
1 6ie (r)

1 i=)

1 —i sn 2(, pe) 1 —a,"'n 'I I

e e '7 (2)
where

1+J(l,m)
ln4«g (a/L) +J(l,m)

J(l,m) =4(J/Kz)(a/z) sin (mz/2l) .

(6b)

where l 'p, '=~ explicitly deals with the average over the
layers. Because of the free boundary conditions, the
fluctuations (8;) will differ from layer to layer ((8;) is

expected to decrease from outside layers to inside lay-
ers). Clearly, the scaling C6„=C6" is no longer valid,
and in fact (because of the symmetry (8;)=(8t —;+~))
C6„should be fitted by the average of l/2 (l even) or
(I+1)/2 (l odd) factors of exp( A;~'3—n ). That the
presence of a surface modifies the behavior of the order
parameter in the layers close to it is quite well known in
other liquid-crystalline phases. In fact, as observed in

recent experiments by Ocko et al. ' and explained
theoretically by Selinger and Nelson, ' the presence of a
surface can induce smectic order in layers in its vicinity.
Similar fluctuations in layer spacing could also, in princi-
ple, lead to variations in the interplanar coupling J. We
have ignored such variations which appear to be small. '

To calculate (8;) from Eq. (1), we need to construct
the eigenmodes. It is easy to check that the transforma-
tion to normal modes,

Equations (2), (5), and (6) summarize our results for
the coefficients C6„needed to Gt the diffraction pattern;
they are completely characterized by the three parame-
ters Kz, Ja, and L/a. For systems of five layers or more
(with three or more A; ' 's) it is therefore in principle
possible to extract the effective Frank constant K~, and
to follow its temperature dependence. This information
can then be used to test predictions of defect-mediated
transition theories. For example, the exponent g6 for
the decay of correlations [(y6(r)y6 (0))-r "'] can be
obtained from the L dependence of C6 in Eqs. (5) and
(6) and equals ri6=18/zlK&. Close to the hexatic-to-
liquid transition, it should have a universal drop from
rt6 = [1 b(T, —T) 't —]/4 to rt6+ =0. Near the hexatic-
to-solid transition, ri6 should vanish as g, where ( is
the diverging correlation length at this transition;

[b
~
T T

~

—0.369634]

To obtain some insight into the behavior of A;~'3, we
examine the limit of weak interplane coupling, (a/L)
« Ja /K~&&1. In this limit

I

(to(r) = g 8;(r)
l i

and

(3a) (I) 21n —+ (l —1 )ln +a; 'Ega'
2zlECg a 4Ja

(7a)

(3b)

(m =1,2, . . . , l —1),

1/2
2

l

(r) = — g cos i —— 8;(r)mx . 1

l i-i l 2

with

I —]

a; = —4 Z cos
mn . 1 . mzi —— ln sin

m=1 l 2 2l
(7b)

leads to a Hamiltonian

I —I

PH= d r g (Vp ) +2Jsin4 m=o 2 2l
(4)

The averages of the normal-mode amplitudes are easily

Inverting the transformation in Eq. (3) leads to

A,"'=18(8,')

I —
1

(po)+ 2 g cos i —— (p ) ~. (5)

From Eq. (7a) we see that on increasing the number of
layers a crossover to three-dimensional behavior (A; ' in-
dependent of l ) occurs for

r

Kg@l~l -21n — ln
4Ja

However, the coefficients A;' in Eq. (7b) decay slowly
as 1/i on moving away from the surface. This is the
characteristic decay of correlation functions in three-
dimensional Gaussian models. In order to study the full
crossover to the three-dimensional result C6„
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-C6 "" ' close to the transition, one must also in-

clude amplitude fluctuations.
Another interesting crossover involves the variation of

the transition temperature with J. For J=O, the layers
are decoupled and topological defects (occurring in-

dependently in each layer) become relevant when q6
=18/+K' = —,', independent of l. For J ~, all layers
behave as one and rt6 =18/nlK~, the defects now extend
over all layers and the critical value of Kz =72/xl de-
creases with l. Note, however, that K~ is the effective ri-
gidity after renormalization by topological defects.
Since the experimental transition temperatures do not
vary strongly with the number of layers l, we expect that
renormalization of Kz by defects is quite strong, and de-
pends on l. How does the crossover from independent
defects in each layer at J 0 to a line of defects crossing
through I layers as J occur? For small J, the inter-
plane energy cost of an isolated defect (on a single
plane) increases roughly as JX over a distance
Equating this result with the energy cost of 2'~ 1n(k)
for creating vortices in neighboring layers leads to the
conclusion that between two layers a "defect line" can
move at most by A, -(K~/J) 't . Naturally as J 0, k
increases and eventually saturates to L. The partition
function for a single defect now behaves as

Z, -(I./a) """'(L/a)'(K, /J)' ',
where the first factor is the energy cost, the second factor
is a center-of-mass entropy, and the final term comes
from the entropy of fluctuations of the defect line in be-
tween layers. The transition condition is obtained rough-

ly by setting Zl —1: For L»k, Kz =72/zl at the transi-
tion, while for k-L, K~ =72/z; and in between the re-
sult is effected by the finite size L. Note that similar
strong fluctuations of a vortex line have also been pro-
posed' for the high-temperature superconducting ma-
terials that have weak interplanar couplings.

As the hexatic-to-liquid transition is approached, Kq
is renormalized by the topological defects, in a way that
may depend on l. Therefore, it is not clear how to com-
pare the values of A;' for different I' s. Away from this
transition, the spin-wave approximation described above

may give the correct answers for all l, with the same
values of the parameters K~, Ja, and L/a. This pre-
dicts strong relations between the C6„'s for different lay-
er thicknesses.

In order to make a rough comparison with the data of
Ref. 11, we assume (a) the approximation of intermedi-
ate interplanar coupling, i.e., Eq. (7); and (b) the same
values of K~, Ja, and L/a for l =2, 4, and 6. Cheng et
al. " fitted their data by C6„=C6+ "" ' . From their
figures, we read values of C6 and k at T=47'C. For
l =2, they found X =1, and hence we identify 2 i

= —lnC6=0. 78. For higher I, in the limit of large n,
their fit yields C6„=C6" . In the same limit, our Eq. (2)
is dominated by the term with smallest A; ' (i =l/2 for I

(y') =—
2

1 a ha ha

4zKg L KA &2 KA &2

and shifting 4J sin (mx/2I) everywhere by h. Our basic
result, Eq. (2), remains unchanged. In the limit

4J/Kz »h/Kz » I/L, the only effect of the field is to
replace the parameter L/a in Eq. (7a) by K~ z /ha .

Finally, we note that similar expressions should apply
to the positional order in thin "solids, " as well as to thin
superconductors, etc. In the case of thin solid films, for
example, the diffraction pattern S(q) will have the
usual Bragg spots PG i q —6 i

"' with rtG =G
x(3p+l)/4zpl(2p+1I, ), where p and X are the Lame
coefficients, but with an additional Debye-Wailer factor
of the form l 'g; exp( —G a; ' ) due to the difference in

fluctuations between different layers. It may also be in-

structive to look directly for these relative interplane
fluctuations by doing diffraction experiments along the
perpendicular direction.
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even). Thus, min{A;' };=—klnC6. At T=47'C this
gives A2 =0.40. Equation (2) now yields

A I"= —ln[2C6„—exp( —A2"n')] ' "'

Replacing C6„by (0.63)"+ " " ' we indeed find that
the right-hand side of this expression is practically in-

dependent of n, and yields A ~
=0.43. Having extract-

ed the values of 8i, A i, and Az we now invert Eq.
(7), and find K~ =30, L/a =9x 10, and 4Ja /K~tr =1,
with large uncertainties. This value of J implies that we
are on the borderline of the approximation (7). Howev-

er, using these values we then obtained C6=0.74 for
1=6, in reasonable agreement with the value 0.69 found
in Ref. 11.

Since L/a is so large, the A;' 's are dominated by the
first term in Eq. (7a), i.e., A;' =(9/trlK&)ln(L/a), im-

plying that IA;' is independent of I. Indeed, the values
of lk, lnC6, representing the smallest IA; ' for each l, are
within 15% of each other. Similar agreement is found at
43 and 45'C. Such good agreement, in spite of the
rough approximations, is quite encouraging. It would be
very interesting to see a direct fit of the data with our
theory.

Much of the existing experimental work is done on the
smectic-I phase, in which the tilt of the molecules gen-
erates a weak ordering field on the hexatic order parame-
ter |A. ' Such a field would add a term
—,
' hP;8; = —,

' hP p to Eqs. (1) or (4), replacing Eq.
(6a) by
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