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We consider the interacting CP' nonlinear a model in 2+1 dimensions in the presence of an Abelian
Chem-Simons term and quantize it canonically using the Dirac-Bergmann algorithm. There arises an
anomalous term in the angular momentum in presence of the interaction, which in the long-range limit

yields the fractional spin for the excitations.

PACS numbers: 11.10.Lm, 11.10.Ef

It is known that (2+1)-dimensional field theories can
have excitations with fractional spin and statistics, the
often quoted example being the O(3) nonlinear o model
with the Hopf term in the action. ' In this model the
configuration space of the finite-energy soliton solution is

C ln In:s s l. Since /r~(C) =/r3(s ) =Z, the con-
figuration space is infinitely connected and hence admits
the possibility of fractional spin and statistics, which
have been studied quite exhaustively in the literature.

The CP' model which is intimately related to the
O(3) nonlinear cr model in the long-range limit has re-
ceived a lot of attention recently in connection with

high-T, superconductivity. In Ref. 4 Polyakov analyzed
the interacting CP' model in the presence of a Chern-
Simons (CS) term and asserted in a path integral formu-
lation that the short-distance bosonic excitations of the
theory become fermions at long distance. The CS term,
which is nothing but the Hopf invariant in disguise, has
been shown to be induced in a fermionic theory coupled
with scalar fields of the nonlinear ct model. (2+1)-
dimensional gauge theories with the CS term have been
studied extensively in the literature. The presence of
the CS term in the action is crucial in converting the
dressed z quanta into fermions and has deep connection
with topological invariants associated with a given space
curve. An interacting fermionic field theory has been
considered earlier in the presence of an Abelian CS term

by Hagen. The canonical quantization of the above
model yields an anomalous term in the angular momen-

tum, the presence of the CS term being essential to the
appearance of this rotational anomaly.

The purpose of this Letter is to quantize canonically
the interacting nonlinear o. model considered by Po-
lyakov, with use of the method of Dirac brackets, and
show the connection between the rotational anomaly and
fractional spin in the theory. The consideration of the
relevant current algebra and other details of the calcula-
tion will be provided elsewhere.

The Lagrangian of the model we consider is

L = D„zkD"zk+
2 e„,&A" O'A1

$0 4n

and the covariant derivative D„ is 1)„—t'A„, where A„ is

the gauge field. The Levi-Civita symbol t.„,~ is fixed by

et/~2 1 and g„, diag(1, —1, —1). The equation of
motion for the 3„field is given as

1 0J„+ e„,g O'A =0,
$0 2z

where

(2)

Jp =t(zk Dpzk Dpzkzk) . —

The equation of motion implies the conservation law

B„J"=0.

(3)

(4)

In the Coulomb gauge, i.e., O'A; =0, the equation of
motion for the A„ field yields two constraints, which can
be easily demonstrated by considering the temporal and

spatial components of Eq. (2) separately. They are

1 0Jo+
2 e;, O'A/=0,

$0 2K

~here

(s)

and

6'j E'0'j and i,j= 1,2

1 0J + e (BJA —8 A/) =0
2 2 /J

$0

or

ypo
e;P alp J; = V Ap.

2xc2

These equations do not involve explicit time dependence
and hence are constraints. In the Coulomb gauge A' can
be written as

A'(x) =e"8)e(x) .

Equation (5) after substitution of the above expression

Here k=1,2 and zp is a two-component complex field

which satisfies the constraint

zkzk I z/ I
'+

I z2 I

' = 1,
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for A'(x) gives

Jp(x) = — V +(x).ypO

2r2
Hence

2

e(x) = d'x'D(x —x')Jp(x'),
ypg 4

where the Green's function D(x —x') satisfies

From Eq. (6) we get, after an integration by parts,

2r
Ao(x) = e'"„d2»' J;(x')8kD(x —x') .

yp0

In two space dimensions

D(x —x') = — ln ~x —x'~ +const.1

4x

(io)

V'D(x —x') = —b(x —x')
and so

2EA'(x) = k" tlj d'x'D(x —x')Jll(x') .
g Jg

Such results for the radiation-gauge potentials have been
derived in Ref. 8 using the current of a fermionic field.

We now proceed to quantize canonically the theory us-

ing the Dirac-Bergmann algorithm. The whole set of
constraints is given below.

41 =z/, zk I =0, i8; )+kzk+Irkzk 0, y3 Irkzk Irkzk +
2 &ij rl ~ 0%t W42z' "

&5=Pl — A =0, &6=P2+
2
A'=0, &7=8 A'=0,0 2 9

4n 4n

4n=V 2 + (8 |) k 82 k tel k + |ii~2 i|l2~1)
yp0

where xk, zk are the momenta conjugate to zk and zk*, respectively. Pp, P], and P2 are the momenta, conjugate to Ao,
A~, and A2 in that order. All the above constraints are second class and the restricted phase-space dimension is
14 —8 =6. The nonvanishing set of equal-time Dirac brackets is

[zk(x), «(y)}D =[&ki —r zk(x)«*(x)l &(» y), [—hark(x), «(y)}D = r' [Irk(x)zi*(y) zk*(x)Ir—l(y)]6(x —y),

[Irk(x), «*(y)}D=
2 [Irk(x)zl(y) zk (x)«*(y)]~(x—y), [zk (x),«(y)}D = ——,

'
zk (x)zl'(x)&(x —y),

[A;(x),zk(y)}D = &j &I"~(x—y)zk(y), [& (x), Irk(y)}D =—,k J 8J &(x —y)Irk(y)

[P;(x),zk(y)}D =i 8,"8(x—y)zk(y), [P;(x),Irk(y)}D = —i 8;"B(x y)Irk(y) . —1

2+2 2+2

We then quantize the system by replacing [, }D by —i [, ].
After achieving the quantization we proceed to compute the angular momentum in the given model. The angular

momentum operator in 2+ 1 dimensions is

In terms of the energy-momentum tensor

J t d2x~iTp
fJg

The symmetric energy-momentum tensor can be obtained by coupling the fields to gravity and then varying the action
with respect to g"':

2 BS
pv

1 tv(D„zkD,zk+D, zkD„zk) — D~kD zk .
yo yp

(i4)

Hence

1
Toj = (DozkDJzk+DjzkDozk) .

yo
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The canonical momenta conjugate to zk and zk* are

1 1
Dozk and nk = DozI,

$0 $0

respectively.
To find out the rotational property of the zp fields we compute the commutator

[J,zk(y)] =e) d xx'[T '(x),zk(y)]

=e;,„d'x x' [zi 8'zi (x) + r)'zi*xi* (x) is—iA ~zi (x) +iA'zi*
vari* (x),zk (y) ]

d xx'[rri8 z i(x)+ rlzi*iri*(x), zk(y)] —ie; d xx'[rriA zi(x) A z—i*xi'(x),zk(y)]

=i (y x V )zk (y) + Qzk (y),
so~

(is)

yp8

n'

where

where Q =fJp(x) d x is the electromagnetic charge
operator. The reason for the appearance of the anomaly electromagnetic charge and the topological charge
term can be clarified if we trace the anomalous term operator, the relation being
from the angular momentum directly.

In (IS)

we concentrate on the term giving rise to the rotational
anomaly, which can be identified as

Janomalous =&ij J d xx'[ &A (&kzk &k zk )] .

Making use of Eq. (11) this can be written as

Janomalous 2
Ei& fki d 'x'xiAJ rl A

2z 4

zg
2' 8

Equation (5), therefore, gives a connection between the

The final answer has been obtained after plugging in the
expression of the A„ field in terms of the current of the
theory. An anomaly in the angular momentum which is

proportional to the square of the charge operator is
known to characterize the fermionic case as well. The
anomalous term shows that the angular momentum of
the excitations of the system contains, in addition to the
regular orbital part, an anomalous part which contrib-
utes as fractional spin to the system. This gives credence
to Polyakov's assertion that the fermions transmute to a
spin-zero and a spin-one object in the presence of a CS
term.

The long-distance (as
~
x

~
oo) or small-momentum

behavior of the model can be understood through the
finite-energy solution of A„as —izk B„zk. At the space-
time asymptote the CS term becomes a Hopf invariant
for the map z:s CP'=s . So, the gauge field in the
interacting theory becomes asymptotically topological
and one can define a conserved topological current as

„„a' *a' (17)

g'= d x J'(x)

It is worth mentioning at this point that the normaliza-
tion for the topological current in the text yields Q'=1
for the one-soliton sector of the theory.

Making use of Eq. (18) the angular momentum of the

system becomes

J=c;' d XX (xk aizk+aizk irk )+ g'
IJ

27K

At O=z and for the one-soliton sector, the contribution

of the rotational anomaly is one-half which precisely

agrees with the result of Wilczek and Zee. '

In conclusion, we would like to point out that although

the result obtained in this Letter is expected in light of
the long-distance equality of the CP' model with the
O(3) nonlinear cr model, several interesting points

emerge from the analysis. The identification of the rota-
tional anomaly in the CP ' model with the fractional spin

in the O(3) o model follows from the long-distance

equivalence of the electromagnetic current of the former
model with the topological current of the later. This
feature strongly resembles two-dimensional field theories

~here the electromagnetic current of a fermionic theory
is identified with the topological current of its bosonic
counterpart. This will make it easier to analyze the

spectrum of the theory in terms of the z fields where the

excitations are point particles in contrast to the extended
nature of the solitonic excitations of the O(3) a model.

Furthermore, the absence of radiative corrections to the

CS term in this model makes the tree-level result exact.
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