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Quantized Multichannel Magnetotransport through a Barrier in Two Dimensions
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Magnetoresistance measurements in a Al, Ga~ — As/GaAs heterojunction with a gate covering a small

region of the sample reveal quantized values for certain ranges of gate voltage; these are explainable in

terms of a Landauer resistance formula. The quantization occurs when the voltage probes are located in

a region of dissipationless current fiow, where the quantum Hall effect provides a physical realization of
ideal leads. The measurements distinguish dramatically between different multichannel generalizations
of the Landauer formula.

PACS numbers: 72.20.My, 72, 10.Bg, 73.40.Lq

In studies of quantum transport through small devices
at low temperatures the elastic-scattering approach due
to Landauer' has been extremely useful. He argued that
the resistance of electrons in a one-dimensional disor-
dered medium is given by
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FIG. 1. Schematical view of the device.

where r and t are reflection and transmission coefficients
for electrons incident from and transmitted to ideal leads
on the left- and right-hand sides of the sample. Recent-
ly, it has been realized that closely related arguments
provide a useful picture of transport in two-dimensional
(2D) systems in a strong magnetic field. A novel feature
of the strong-field case is the spatial separation of left-

going and right-going states which, in the case of ideal
leads and the Fermi energy not equal to a Landau-level
energy, are localized on opposite edges of the 2D sample.
The experiments described below were motivated in part
by the fact that the occurrence of the quantum Hall
effect allows, for the first time, a physical realization of
Landauer's ideal leads.

Our samples are Al„Ga& „As/GaAs heterojunctions
with two undisturbed regions separated by a small region
covered by a gate. (Figure 1 gives a schematic picture of
the sample. ) In the quantum Hall regime the Fermi en-

ergy corresponds to an integer number of filled Landau
levels, and in the absence of a gate voltage a nondissipa-
tive current is carried by the edge states. When a
gate voltage is applied a barrier appears between source
and drain which reduces the carrier concentration in the
gate region and causes a potential difference to develop
along either edge across the gate section. We see below
that this resistance across the barrier exhibits a novel

quantization, which is explainable in terms of a Lan-
dauer formula and which, in the case where several Lan-
dau levels are occupied in the ideal leads, distinguishes
dramatically between different multichannel generaliza-
tions of the Landauer formula. 9 " Our experimental re-
sults are consistent with those obtained earlier by von

Klitzing and Ebert'2 and by Syphers and Stiles' who

studied samples with two regions of different carrier den-
sity. The three-region geometry studied here is intented
to address issues raised by recent developments in the
study of quantum transport phenomena.

The conventional Al„Ga~ „As/GaAs heterojunction
used has a cap layer of 8-nm GaAs, a 40-nm-thick Si-
doped Al„Ga~ —„As layer, and a spacer of 21.3-nm thick-
ness. The carrier concentration at a temperature of T

4 K has a value of n, 3.21X10"cm and the mo-

bility is 6.2x10 cm /V s. The samples have been
etched in a Hall-bar-like structure with a channel width
of 100 pm. The gate is covering the whole width for a
distance bs. The gates used (bs 10 and 20 pm) are of
macroscopic dimensions in comparison to the magnetic
length I, . For the measurements the samples were im-

mersed in He (T=0.5 K) and magnetic fields up to 13
T were applied perpendicular to the two-dimensional
electron gas in order to achieve the ideal-land condition.
The voltage across the potential probes was measured
while a constant current was applied to the sample. In
order to avoid heating of the electron gas in the narrow
gate region an ac lock-in technique and a current of
I 10 A were used. As the gate voltage was varied,
the magnetic field was kept fixed at values of 8 corre-
sponding to integer filling factors v=n, h/eB in the un-

disturbed parts of the sample. Typical experimental
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curves obtained by varying the gate voltage are shown in

Fig. 2.
For zero gate voltage the carrier concentration under

the gate is almost the same as in the undisturbed parts
and the measured resistance is minimal as a result of the
integer filling factor in all parts of the sample. Applica-
tion of a negative voltage Ug lowers the electron concen-
tration and the filling factor vg in the gated region de-
creases. For high enough voltages (Ug= —0.3 V) the
gate region can be totally depleted and the resistance
grows rapidly. In the curve for a magnetic field of
8=3.01 T, corresponding to the filling factor of v 4 in

the undisturbed parts of the sample, three local maxima
are observed. We ascribe these maxima to the filling
factors vg approaching integer values vg 3, 2, and 1 in

the gated region since the observed periodicity on the
gate-voltage scale is consistent with the change of the
carrier concentration expected from the capacitance of
the sample. For the filling factor vg = 2 (Us = —0.18
V) the local maximum is spread into a real plateau. It is

flat to an accuracy of 10 in a gate-voltage range of
AUg =50 mV and the measured resistance value of
R =6.453 kQ is just equal to h/4e with the same accu-
racy. This plateau occurs because of the splitting be-
tween the lowest Landau levels and it is thus more
developed than the maxima at filling factors vg 3 and

1, which reflect the spin splittings within the two lowest
Landau levels. A similar dependence of the resistance on
the gate voltage is obtained for a magnetic field value of
8-6.01 T. On account of the low filling factor of v 2
the only integer value obtainable for vg by decreasing the
carrier concentration in the gate region is v~ 1, which
corresponds to the spin splitting of the lowest Landau
level. Because of the higher magnetic field the spin split- e eI VI —(pUL pLL) Vr (pUR pLR) i (3)

ting is better resolved and the resulting plateau has a
value of R =h/2e (with an accuracy of 10 ). The
minima at the left side of the plateaus in both curves are
more pronounced for narrower gate structures. These
minima have a striking similarity with the unexplained
minima observed sometimes in Hall resistance measure-
ments. ' The total device resistance is just equal to the
sum of the quantum Hall resistance of the ideal leads
and the resistance of the gate region.

We interpret our experimental results using the mul-

tichannel, multiprobe Landauer resistance formula pro-
posed by Biittiker, ' which asserts that

I; —(M; —R;,;)p( —gT;,)p) (2)

In Eq. (2), p; is the chemical potential at contact i, M; is
the number of channels in contact i, I; is the current
from the reservoir at contact i, T; J is the total probabili-

ty, after summing over all channels, for carriers incident
from contact j to be transmitted to contact i, and R;;

M~ —J~~; T; J is the total probability for reflection in

the ith contact. We shall apply this equation for each of
the six contacts (the current source and drain and the
four voltage probes) labeled as in Fig. 1. We assume
that the condition necessary for the quantum Hall effect
holds outside the gate region, i.e., that the right-going
states are localized along the upper edge, that left-going
states are localized along the lower edge, and that the
electrons incident from an edge state are certain to enter
a contact.

Applying Eq. (2) at the source, at the drain, and at
the contacts on the upper left and lower right it follows
that

h
2e2
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4e&
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where vI and v, are the integer filling factors specifying
the number of channels in the areas to the left and to the
right of the gate region. (In the experimental situation
vf v, v. ) Equation (3) expresses the quantized Hall
conductance achieved in the ungated regions. To calcu-
late the magnetoresistance we must consider the lower-
left and upper-right contacts. Electrons transmitted to
the upper-right contact can originate from the upper-left
contact and be transmitted over the barrier, with total
probability T, or originate from the lower-right contact
and be reflected by the barrier with total probability R'.
It follows that

T +
R'

T+R I UL+ T+R ~LR (4)
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FIG. 2. The resistance measured across a gate region with

bg =10 pm vs the gate voltage Ug at a temperature of T 0.55
K for magnetic fields corresponding to the filling factors v =4
and v 2.

T' R
+R ~LR+ T +R ~UL (5)

Similarly, electrons transmitted to the lower-left contact
can originate from the lower-right contact with total
probability T' and from the upper-left contact with total
probability R so that
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Note that T+R =vI and T'+R'=v, by conservation of
probability and that T+R' v„and T'+R =vl by con-
servation of probability in a reversed field IT; ~

(H.)
=TJ. ;(—0)], so that we must have T=T' and all po-
tential difl'erences can be expressed in terms of v„vt,
and a single total transmission probability. In particular
the magnetoresistances measured along the upper and
lower edges are given by

and

JUL PURRU=
eI

~ ALL PLR lt (T
—) —))

eI
(7)

R= (v ' —v ')
e 2

and the tunneling probability can be directly measured.
In our experiments the negative gate voltage, Ug, de-

pletes the gated part of the sample and lowers the filling
factor of this region, vg. In other words, a potential bar-
rier is formed in the middle of the sample which, in the
simplest approximation, enlarges the potential energy by
a constant amount, V~, which is a monotonic function of
Ug. It is intuitively clear that for high-mobility samples
with narrow Landau levels and vt v„v equal to an in-

teger, vg will equal an integer over wide ranges of Vz,
close to Landau-level separation energies. In this case
the total transmission probability must equal T N& = vg

and electrons in the N, v —
vg channels corresponding

to Landau levels below the barrier will be totally
reflected as illustrated schematically in Fig. 3. We em-

phasize that for high-mobility samples with narrow
well-separated Landau levels, this conclusion is indepen-
dent of complexities associated with a realistic treat-
ment' of the potential distribution at the edges of the
gate region. This is the mechanism responsible for the
magnetoresistance plateaus versus gate voltage in Fig. 2,
and the quantized magnetoresistance values are predict-
ed by Eqs. (6) and (7) to equal

Similar equations have recently been independently de-
rived by van Houten et al. ' and by Biittiker. For v=4,
vg=2 and v=2, vg=1 the measured plateau values
agree with Eq. (8) to 1 part in 10 . For v=4 and vg =3
and 1, the maxima in R are, respectively, 82% and 89%
of the plateau values predicted by Eq. (8) for a fully
developed spin splitting.

An interesting feature of our results is the surprising
decrease in R with increasing gate voltage as vg is de-
creased below an integer value. This decrease is respon-
sible for the minima on the left-hand side of the plateaus
in Fig. 2. As explained in more detail elsewhere' these
minima are due to the occurrence of bulk states in the
gate region which allows the originally fully reAected
channels to be partly transmitted after diffusing through
the bulk region of the gate. In agreeinent with experi-
ment, this mechanism produces a stronger effect as the
width of the gate bg becomes small compared to its
length, i.e., to the width of the Hall bar. Eventually, the
decrease in transmission for the channels which were
originally fully transmitted begins to dominate and the
magnetoresistance rises again.

It should be realized that many different multichannel
generalizations have been proposed for the Landauer for-
mula" based on different assumptions about the non-
equilibrium distributions of carriers in the leads and
diA'erent models for the voltage measurement process.
In the present context it has been unclear whether or not
in averaging chemical potentials to determine pUR and

pLL [Eqs. (4) and (5)] the sources of the electrons in-

cident upon these contacts should be weighted according
to their densities of states (inverse channel velocities).
When there are few channels and large velocity dif-
ferences between channels, the quantitative difference
between these options can be large. The discussion here
is based on Biittiker's resistance formula' in which these
weighting factors do not appear, while in the original dis-
cussion of the strong-field case, 2 which is based on the
multichannel resistance formula of Ref. 9, they do ap-
pear. If the latter formula were used, the magnetoresis-
tance on the plateau for v 4 and v 2 would equal
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FIG. 3. The trajectory network model for integer values of
both filling factors, v and vg.

R 2
4e' 1+Up/U i

(9)

where v~ and vp are the velocities in the ungated region
of the sample for the edge-state channels corresponding
to the n =0 and n =1 orbital Landau levels. ' For para-
bolic confinement and a Fermi level midway between the
bulk n = I and n =2 Landau levels vp/v~ =J3. It is easy
to verify that more realistic confining potentials give
similar values for vp/v~ so that Eq. (9) is in stark
disagreement with the precise quantization found experi-
mentally. Our results therefore favor, at least for the
strong-field case, the resistance formula used here, which
is based on a model where the chemical potential in the
voltage probe is chosen so that the equilibrium current
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ejected from the contact cancels the nonequilibrium
current transmitted to the contact.

In closing we remark that the novel device described
here provides a new way of studying quantum magneto-
transport properties. For the first time, because of the
occurrence of quantum Hall effect away from the gate
region, the energy dependence of transmission through a
barrier can be measured directly. This, combined with
the spatial separation of left-going and right-going states
in a strong magnetic field, also makes possible unique
tests of the theoretical approach to resistance formulated
by Landauer.
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