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Analytic Solution for Second-Harmonic Gyroresonant Absorption and Mode Conversion
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An entirely analytic treatment for second-harmonic mode conversion is presented, which uses the
wave-phase-space (x-k space) method. Explicit expressions are derived for the coefficients of transmis-
sion, reflection, conversion (magnetosonic wave to ion-Bernstein wave), and absorption. A conservation
law for wave energy flux in phase space is also presented.
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One of the outstanding analytic problems in the ICRF
(ion-cyclotron-range-of-frequencies) heating to toka-
maks is the linear mode-conversion process at the ion
gyroresonance layer. The complexity of the problem is
largely due to the presence of several waves, i.e., the in-

cident and reflected magnetosonic waves, the mode-
converted ion-Bernstein wave, and a continuum of
Case-van Kampen (CvK) modes (which represent the
dissipative gyroresonant absorption by ions). Some ap-
proaches to the modeling of this problem' have led to a
fourth- or or higher-order differential equation that
defies analytical solution, thus requiring numerical
analysis.

On the other hand, if we consider the problem from
the wave-phase-space (x-k space) point of view, we find

that the waves are separated by their characteristic ray
paths. Typically they meet only pairwise, at the places

where mode conversions occur (Fig. 1). The process of
ICRF heating can thus be treated as a succession of
pairwise conversions. This recognition has led to an
order-reduction scheme, which reduces the fourth-order
equation to two second-order equations; in the case of
high-field incidence, when the reflected magnetosonic
wave is absent, a closed-form analytic solution can be ob-
tained. (The papers referenced above have treated both
minority fundamental and majority second-harmonic
gyroresonance. In the interest of clarity, we limit our
treatment here to the latter mechanism only. ) The
analysis is now further simplified by the introduction of
the concept of pressure-anisotropy waves, which travel
mainly in k space and link the successive mode conver-
sions. In phase space, to model each mode conversion re-
quires only a single ftrst-order differential equation,
which can be solved analytically. In this Letter we ex-
ploit these ideas to derive explicit expressions for the
coefficients of transmission, reflection, conversion, and
absorption for this problem.

We consider the standard one-dimensional slab model,
with uniform density and temperature, and nonuniform
magnetic field Bo(x) Bo(1+x/Lo)i. The incident
magnetosonic wave has a single frequency coo, with fixed

ky, k, eO (Fig. 2). The derivation of the equations is out-
lined as follows. Consider the linearized Vlasov-Maxwell
theory in the guiding-center representation. Denote the
guiding-center variables by (R, vt, p, 8g), where R is the
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FIG. 1. Schematic diagram of the mode-conversion process-
es. The magnetosonic waves travel only in x space, while the
pressure waves travel only in k„space. The ion-Bernstein wave
travels out of the resonance layer and is absorbed by electron
Landau damping.

2Q,(x) = (op(1 + x/Lp)

FIG. 2. Schematic diagram of the slab model of a tokamak.
The incident wave has frequency coo and fixed k~, k, &0. The
resonance layer is located at x = 0.
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guiding-center position, v
~~

its parallel velocity, p
m—;v~/2B its magnetic moment, and Hs its gyrophase.

If the wave has the form expi(k x —rut), in the eikonal
sense, then the linear perturbation f of the guiding-
center distribution is a sum gtftexpi(k. R —tot +l&~),
with coefficients ft containing Bessel functions. The rap-
idly varying exponentials can be transformed to higher
order by the Lie transform technique, or by solving for
the perturbed distribution in terms of the electric field,
obtaining the current. This familiar procedure of deriv-

ing the dispersion tensor for waves introduces resonance
denominators. For ions in the second-harmonic reso-
nance layer,

d
(k R —cut+28s) k R —cp+2n;=0,

dt

the corresponding exponential is not rapidly varying.
Our strategy is to omit the l=2 term from the dielectric
tensor; that term then appears in the wave equation as an
external current. Thus we obtain two coupled equations,
the linearized Vlasov equation for the resonant (1=2)
particles, and the wave equation driven by their current.
All the nonresonant contributions go into the dielectric
function in the wave equation. In the k„representation,
we obtain, after extensive but straightforward algebra,
which makes use of congruent reduction, '

„dk„'De(k„,k„')E(k„')=a(k„)„dv~~p(k„;v~~),
(1)

„dk„'Dz(k„,k„';v~~)p(k xv )l=a (k„)E(k„),
where E(k„)is the electric-field component of the mag-
netosonic wave that rotates with the ions (the resonating
component) and p(k„v~~)=fdppf2(k„;v~~,p) is essen-
tially the (v„v») hybrid moment of the perturbed func-
tion (the pressure anisotropy -wave ) DE an. d D~ are
two-point dispersion functions, whose Weyl symbols

D(k„,x)= D(k„+2 o,k„—2 o)exp(icrx)4 2z

are local dispersion functions. Let the unperturbed ion
distribution be Maxwellian; then to order (k&v;/0;) we

(2a)De(k„)E( ) =a(k„)„du~~p(;u~~),

D~(x;v~~)p(;v~~) =a*(k„)E(), (2b)

where, depending on the representation, the unspecified
independent variable is either x or k„,with the corre-
sponding operator k„~ id/dx —or x~id/dk„The. se
equations have two mode-conversion regions (i.e., DF.
=D~ =0) at k„+'k„p=~ (kp —

k» ) 't, x =x(v~~)
= —k~~v~~/20 (Fig. 1). When the incident wave E;(x)
traverses the resonance layer at x =0, part of its energy
gets converted into p(k„;vi), which is governed by the
dispersion relation cu=k~~v~~+20;(x), and thus travels
only in k„space at velocity k„=—8cu/Bx = —20 .
When this pressure wave crosses the second mode-
conversion region at k„—k„p,part of its energy is con-
verted into the reflected wave E„(x).It is obvious from
Fig. 1 that if the incident wave comes from the high-field
side no reflection occurs, because the pressure wave can-
not go up to the other mode-conversion region. As
p(k„;v~~) is kinetic in vi, it contains the ion-Bernstein
wave plaw(k„;vl) as well as the CvK modes pc,K(k„;vl).
The ion-Bernstein wave is weakly damped and propa-
gates out of the resonance layer, while the CvK modes
phase mix and represent gyroresonant absorption. The
projection of p(k„;vN) to the ion-Bernstein wave is found

by the spectral deformation technique. "
Using the rules of Weyl-symbol calculus, ' we can

derive from Eqs. (1) a conservation law for the wave en-

ergy flux in phase space:

have a(k, ) = —i (k, + k» ) 't, and

8tu (1+3N )(k —k —k )
Dp(x, k„)= 3(k2+k~) —2k (1 —3N )/N

tu kgvii 20'(x)

with kp=N~ptup/cg, N~p =(I+Nlrb )(1 3NFI)/(I
+3N~~ ), N~~ =k~~c~/top, and g(v~~) =exp( —v~~/2v )/
(2n) 't

v; the v~~ distribution. We can ignore the x
dependence of DE, and D~ is k independent. Equations
(1) can be rewritten as ordinary differential equations:

x E (k„,x) + k„dvigu p (k„,x;uii) =0,8DF. Q dD»

x cp k 4 tu

where

E (k„,x) = dsE(x+ —,
' s)E*(x—

2 s)exp( —ik, s)
is the Wigner function of the E field, and similarly

'da
p (k„,x;v~~) = p(k„+—,

' o;ui)p*(k„=—,
' o ,v~~)exp(iax-) .

4 2z
The integral form of the conservation law is obtained by our integrating over a box in phase space (see Fig. 1):

2nl a I
'+

I x I
2~ IE, I

'+
I k. I „dvigu

'
I plBW I

'+ Ik. I „dvigu
'

I pc K I
', (»

cp

where the cross terms of p~qw and pc, K vanish because of the orthogonality of the eigenfunctions in the spectral defor-
mation expansion.

We proceed to the solution. Let tp tpp+i0+, simulating the condition that E(x) vanishes as t —~. We use the
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x representation in region I; linearize the dispersion function DE(k„)about k, p,

DE(k„)= (k» k„p)4c k„p(1+N~f) /(kocgN~p),
with k„—id/dx; and evaluate the coupling coefficient a at k„=k„p.Eliminating p(x;vi) from Eqs. (2) we get a
first orde-r ordinary differential equation for E(x), whose solution is

kpLpNJ p v; g(vg)E(x) =E; exp ik„ox+i „dx'„dui, +4k, p I+NP( cg" " x' —x vi i0—+

where E; =lim, — E(x)exp(ik„px). Thus we find the transmission coefficient T(ri):

IE, I

' z'kpLp kp U& N J pp(- ri), ri-=
E; 4 k»o c~ (1+Nf )

(4)

(5)

This result has been derived previously by many authors. From (4) and (2b), we then find p(x;vi), Fourier transform
it to k„space, and obtain the pressure wave just after the first mode conversion (at k„&k„p):

pi(k„;ui)= E; — ', g(vi)exp i(—k„—k,o)x(vi) —" "" "d(Z(( i0+)—
p C~2 z"—

where
p + oo

Z (():—z 'i' dx exp( —x ')/(x —()
is the plasma dispersion function. Between the two mode-conversion regions, we can ignore the effect of coupling, since
it is proportional to k j. As a result the pressure wave travels in k„spaceaccording to

[ru —k ~~v ~~

—20; (x~ id/dk)»]p(k»v )i=0,
where 2Q;(x) =sp(1+x/Lp). Since (6) satisfies this equation, it remains valid up to the second mode-conversion re-
gion. When the pressure wave crosses region II, it excites the reflected magnetosonic wave E,(x) Using .the k„repre-
sentation, and eliminating E(k„)by (2a), we get a first-order ordinary differential equation for p(k„;vi),with solution

p(k»;vi) =pi( —k p', vi)exp[ —i(k„—k»p)x(v~~)]+8(k»+k„p) g(vi)exp[ —i(k„+k„p)x(v~~)]27'

2+9
x „dv(ipse(—k„p',v(~)exp[i2k„px(v(()], (7)

where 0(k„)=0, —~, —
1 for k„)0, =0, (0, respectively. To find the reflection coefficient we need to know

E,(x —~). Again using the x representation, we linearize DE(k„)about k p.

DE(k, ) = (k +k,p)4k„pc (1+N)~ ) /(kpcgNj3p),

with k, ~ —id/dx; Eq. (2a) becomes

—ikpcgN p
k»p —t E,(x) =

3 & &
dviip(x;vii) .

4k„pc 1+Nii

Integrating this equation, with the boundary condition E„(x~—~) =0, we have

kpNJ p
E&(x —~) = i dvip( k»p,'vi) .

8k c (1+N )
Using Eq. (7) we find, after some algebra, the reflection coefficient R:

IE, I

'
R(ri, x) —= 4g

2+@

' 2 '+" dr
exp —r +i 2mr —" de(( —i0+)

2

(8)

where rc= 42k»pkiv;/2A .
Below region II, i.e., k —k„p,the coupling is no longer negligible. Therefore the equation governing the propaga-

tion of the pressure wave here is

d fO

i +x(ui) pi(k„;ui)=y(k )g(ui)„duI)pp(k„;v()), (9)
X

where y(k„)=c k, Lpv; /[c~copDE(k, )]. By analogy to the CvK analysis of Bateman and Kruskal, ' we introduce the
operator L, defined by

(Lq)(k„;ui)—:x(u~~)q(k„;vi) —y(k„)g(ui)„duI~q(k„;uI~),
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A

where k„appears as a parameter. The corresponding eigenvalue problem is Lqrr= ~qII, , and the solution of (9) can be
expressed as

~k„
p(k„;Ull)=gcj(k„)qj(k,;Ull)exp i„8;(k„')dk,' +

dirac~(k„)qB
(k„;vll)exp(ik„W').

J
However, the eigenvalues 8' are only the real axis; the discrete ion-Bernstein eigenvalue 8'&Bw is on another Riemann
sheet. To expose it we use the spectral deformation method of Crawford and Hislop, "which preserves the completeness
and orthogonality of the CvK eigenfunctions. The result of this analysis is, in the limit of weak damping (kll/k&) «1,

PIBW(kxivll) g(UII) dUIIP(kx Ull)i PCvK(kxivll) =P(kx Ull) PIBW(kxivll) ~ (lo)
Therefore, we can derive the conversion and absorption coefficients C and 3, which are defined as the ratios of the wave
energy fluxes [see Eq. (3)]:

=I —T(q) — " R(q, x).(2+ ~)'
Sg

I k I fd l(t)D /t)to) I ptaw I (2 —rl)'
C rl, tr R ri, tr

I x
I (aD, /am)2n I E; I

'

lk. lfd (»,/a )IPc KI'
A rl, x

I x I (riDE/tlto) 2tr I E; I

' (12)
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FIG. 3. Coefficients T, R, C, and 2 as functions of kii, for
hydrogen second-harmonic resonance, with k~ =0, Bp=1.4 T,
Lo 132 cm, fo 42 MHz, n0=4x10' cm ', and T; =2 keV.
Note that both g and x vary with k ii.

It is easy to check that T+R+C+A= 1, showing that
our approximations are consistent. These coefficients are
plotted in Fig. 3; they are in excellent agreement with

those of Fuchs and Bers.
In conclusion, we see that I-k space is the natural set-

ting for studying wave propagation and interaction. By
considering the problem in wave phase space, we not

only can solve it analytically, but we also gain a better
understanding of the physical processes. This method
can be adapted to treat minority heating, as well as elec-
tron gyroresonant heating (which requires relativistic
guiding-center theory' ). It can also be extended to
higher dimensions.
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