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The nonlinear dynamics of transverse particle oscillations in the Fermilab Tevatron is studied experi-
mentally and compared with prediction. Accurate measurements of various phase-space features are ob-
tained. A theoretically expected metastable state of the accelerator, with particles captured on nonlinear
resonance islands, is demonstrated experimentally, and stability of the state is investigated.
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This Letter describes a beam-dynamics experiment,
performed in the Fermilab Tevatron, that was largely
motivated by planning for the Superconducting Super-
collider. In intentionally adding nonlinear elements in
order to "mock up" some nonlinear features anticipated
for the Superconducting Supercollider, observations were
made which are applicable to areas of physics much
broader than accelerator physics, as they relate to the
phase-space description of nonlinear oscillations. Those
features are described here. The subject of this Letter,
then, is the experimental study of a Hamiltonian system
and its Poincare map, a century-old entity with value
previously restricted to theory.

For this experiment the Tevatron can be regarded as a
linear system on which nonlinearity in the form of six-
teen sextupole magnets, each of strength S, was inten-
tionally superimposed. The experimental procedure
starts with a "needle beam" consisting of some 10' cir-
culating stored protons, all assumed, for now, to have
essentially the same momentum and to be on the central
orbit. Next the same angular deflection D is impulsively
applied to every particle by a pulsed deflecting magnet.
The subsequent beam-centroid displacement is sensed
electrically for as many as a million accelator turns by
beam-position monitors (BPM). These measurements
are used to generate an experimental Poincare plot, an
object described in the following theoretical discussion.

To an excellent approximation, the equation of motion
satisfied by x(s), the horizontal particle deviation from
the central orbit, is

d'x/ds '+ K(s)x = —e(s)x '.
Here s is the longitudinal particle coordinate, which ad-
vances from 0 to C, the circumference, as the particle

completes one revolution of the accelerator. Particles ex-
ecute "betatron" oscillations with linear focusing being
due to quadrupole fields of strength K(s). The number
of oscillation periods in one revolution is called the tune:
about 19.4 for the Tevatron. The anharmonic term in

(1) is due to sextupole fields of strength e(s), proportion-
al to S. Both lt (s) and e(s) are periodic functions of s
with period C. The absence of damping in (1) is valid as
the quality factor of these oscillations has a very high
value & 10, making this a truly Hamiltonian system.

The concept of phase space is theoretically helpful and
experimentally essential when analyzing these oscilla-
tions. In this description the coordinate x and the slope
p=dx/ds are treated on equal footing as dependent
variables. By plotting their values x& and p& for succes-
sive passages, t =0, 1,..., of the particle past a reference
point in the accelerator, one obtains a "Poincare surface
of section. " After judicious choice of scales these points
are given by xf af cosy' and pf = ar sing„where
a, /2 and tlr, = 2ttvt are "action-angle" variables. Time t
is measured in units in which the revolution period is 1;
in these units the frequency, v, is called the "fractional
tune. " When the amplitude a& is sufficiently small, it
does not deviate from its average value a, and the
phase-space point moves on a circle on the x-p plot; any
deviation is due to e(s). Implicit in the restriction to the
single Poincare plane is complete ignorance of the
motion elsewhere in the ring. In particular, the number
of complete cycles, and hence the integer part of the pre-
viously defined tune, are undetectable. The terms phase-
space plot and Poincare plot are used interchangeably
from this point on.

Hamiltonian concepts are important in analyzing
phase-space motion. The Hamiltonian leading to (1) is
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FIG. 1. Poincare map generated by numerically tracking
particles of various amplitudes. Most of the features have been
demonstrated and measured.

FIG. 2. Raw BPM turn-by-turn output for 500 turns after
transverse deflection of the beam. The smooth fit has the
theoretically expected Gaussian shape.

H(x,p, s) = (p 2+x 2)/2+ c(s)x 3/3. Here a Folquet
transformation has been made, in order to replace the s-

dependent factor K(s) by 1, to make H independent of s
for small t. . At sufficiently small amplitudes 0 is in-

dependent of s, making it a constant of the motion. This
is equivalent to the a, a solution, since H and

a =x +P are equivalent constants of the motion.
Below, we will use the result that a is an "adiabatic in-

variant" which remains approximately constant when a
parameter, such as K(s), is slowly varied.

The expected phase-space structure is illustrated in

Fig. 1. It was calculated by symplectic numerical track-
ing' through a representation of the lattice consisting of
static elements, linear except for "chromaticity compen-

sating sextupoles, " and the sixteen main sextupoles. The
former were calculated to be negligible, except with

S 0. This was confirmed experimentally, and for most

other calculations, for greater speed, only the sixteen
main sextupoles were included. Nonlinear-error mul-

tipoles in the Tevatron, though known, and known to
smaller yet, were not included.

Experimental investigation of this structure, starting
at small amplitudes and working out, will now be de-

scribed. The amplitude a is adjusted by means of the
deflector strength D. Transverse displacements xi, and

x2„measured at two positions separated by about one

quarter of a betatron wavelength, can be used to make a
"raw" Poincare plot, as will be shown below. The quan-

tity p, has to be obtained indirectly from these values

and then a, is calculated. Figure 2 shows a typical
record of measured values of a& for the first 500 turns
after the beam has been deflected.

Values of v measured by fitting the early turns of data
like those in Fig. 2 are plotted in Fig. 3; they agree well

with calculations. The damping of centroid motion ob-
served in Fig. 2, which appears to contradict the high
quality factor of individual particle oscillations men-
tioned above, can now be understood. Because of the
dependence v(a) of tune on amplitude, due to the
anharmonic term of (1), different particles have slightly
different tunes. Though the amplitudes start out in

phase, they gradually lose coherence. Since the BPM
measures the centroid of the full set of protons there is
an apparent damping. Calculations of the decoherence,
starting with the known beam dimensions, agree well

with measured values. The persistent signal (not nor-
mally present), due to particle capture onto stable is-

lands, is discussed below. The dip is due to destructive
interference.
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FIG. 3. Dependence of tune on amplitude. Data points are
measured; the curve is predicted.
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Next we consider the qualitative phase-space behavior
as the amplitude is increased further out of the "linear"
region. Deviation from circularity in Fig. 1, due to the
s-dependent nonlinearities, can still be treated perturba-
tively. The distortion is quantified by the "smear" pa-
rameter, the fractional root mean square deviation of a.
Quantitative comparison between observed and calculat-
ed smear is contained in Fig. 4, which again shows excel-
lent agreement. Though the Hamiltonian H, being ex-
plicitly s-dependent, is no longer a constant of the mo-
tion, the phase-space points still lie on a smooth curve in

this region, at least to the accuracy of the plot. The ex-
istence of such "regular" curves, of the form Hp(x, p)
=const, is consistent with the so-called Kolmogorov-
Arnol'd-Moser theory.

At large amplitudes the regularity is lost and the
motion is chaotic. This is shown on the periphery of Fig.
1. The largest regular contour is sometimes called the
"dynamic aperture" of the accelerator. By intentionally
"heating" the beam its transverse size was gradually en-
larged until particles were lost. With use of a "flying
wire" technique, the beam size was then measured to ob-
tain the dynamic aperture. The measured aperture was

approximately 20% less than the calculated aperture.
We ascribe this to presently not understood effects
which, on the millions-of-turns time scale on which the
measurement was made, were not included in the
hundreds-of-turns tracking calculations.

Finally, we have observed the chain of five "islands" of
Fig. 1. The concept of resonance enters as follows. With
the base tune (the tune with a=0) just above —,', after 5

turns around the accelerator a particle returns close to
where it started. The effect of the nonlinearity is to
make the tune decrease with increasing amplitude (Fig.
3), and so there is one amplitude, aR, for which the tune
is exactly 5, and the repetition is perfect. Furthermore,
there is a frequency entrainment effect causing all near-

by amplitudes to "lock on" to exactly the same tune of
This accounts for the islands. Their centers are

called stable fixed points since a particle starting near
one stays near forever. "Stroboscopically" viewing every
fifth turn, the particle moves steadily along a regular
oval curve, circulating around the fixed point in much
the same way that a small-amplitude particle circulates
around the origin. An island tune vi is defined as the
average number of revolutions around the island per turn
around the accelerator.

The topology of Fig. 1 also requires five unstable fixed
points between the islands. Some chaotic motion is ines-
capable in their vicinity, but that behavior is restricted to
too small a phase-space area to have influenced our ob-
servations.

It follows that the accelerator should be capable of
operating as a "different" accelerator in which the parti-
cles circulate indefinitely, not around the origin, but
around the newly understood fixed points. This could be
called an "excited state" of the accelerator, or, perhaps
better, a metastable state, since the system is observed to
"decay" with a lifetime as treat as a minute. The decay
mechanism is not understood. Language has intentional-
ly been employed to motivate observations similar to
those made in the study of atomic systems. These obser-
vations include demonstrating the existence of the state,
measuring its production probability and decay rate, and
investigating its dependence on external variables.

Some of the protons are captured on the stable islands
when a properly adjusted deflection is administered to
the beam, with the sextupoles turned on to give resonant
islands. This manifests itself by the absence of decoher-
ence. All particles on one of these islands exhibit a tune
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FIG. 4. Plot of smear vs S for various values of D. Data
points are measured values; curves are predictions.

FIG. 5. "Raw experimental Poincare map" exhibiting a
metastable state of the accelerator. The "logo" in the corner
of the plot is a demagnified view of the same data with succes-
sive points joined by straight lines. The point lands only on

every second island, confirming the & identification.

2754



VOLUME 61, NUMBER 24 PHYSICAL REVIEW LETTERS 12 DECEMBER 1988

0.25
I I I I I I I I

O.ZP

Q
~ W

.H Q. 15
Q

0.10

C4

0.05

000 I I

0.39
I I I I

0.42
I I I I

0.4 0.41
Horizontal tune, v„

FIG. 6. Capture fraction measured as the island amplitude

is moved through the deAection amplitude, by varying the base
tune. The curve only guides the eye.

of exactly —,', totally defeating the decoherence. This ac-
counts for the signal persisting after a few hundred turns
in Fig. 2. Signals like this have been observed to persist
for over a minute (approaching a million turns). Spec-
tral analysis yields a value v=0.400010~0.000005,
consistent with —', . Figure 5 shows a thousand turns of
data, xt vs x2, taken some seconds after the kick time.
The five islands are clearly visible. Particle trapping was

also observed at tunes of —,', —', , and —,', .
To quantify the production probability, the "capture

efficiency" was defined as the fraction of nondecoherent

charge surviving 500 turns, well after the decoherence of
uncaptured particles, and before appreciable decay has
occurred. It depends on the relaxation between a and

att, on the relation between beam size and island size,
and on the angular orientation in phase-space of the is-

lands. Experimentally, with D (and hence a) held fixed,
the capture efficiency was measured as the base tune

(and hence att ) was varied. A classical resonance
response is shown in Fig. 6, with the capture e%ciency

only being appreciable for a = aR.
To investigate the decay mechanism for loss of parti-

cles out of the stable islands the decay rate was mea-

sured as the accelerator base tune was sinuisoidally

modulated with a tune range of ~Av, at a frequency
(i.e., tune) of vM. As vent was increased at fixed Av, the

decay rate remained small, until a rather sharp break
point was reached, beyond which the decay rate in-

creased rapidly. The model of adiabatic behavior, due to
Chao and Month, has the resonant islands moving in

phase space at a rate sufficiently slow that trapped parti-
cles remain trapped. The location of the break point,
and the adiabatic condition vMhv( vt/5, can be used to
obtain an estimated value of 0.007 for vt.

Measurement of phase-space features with a precision
not previously achieved, at least in the context of ac-
celerator physics, has been described. We regard the
island-capture results as preliminary but indicative of an

interesting research direction. It is pleasing to see such a

complicated device as a storage ring exhibiting such ex-

otic, yet simply understandable, behavior. This should

permit controlled investigations of long-term stability, of
interest both for accelerators and for mechanical systems
in general.
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