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Classical-Quantum Correspondence in the Presence of Global Chaos
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We compare the classical and quantum mechanics of a system whose classical dynamics are dominat-

ed by chaos. We observe a quantum "scars" of short periodic orbits. By examining the states on a quan-

tum surface of section, we find that the stable and unstable manifolds of the periodic orbits have a clear
eff'ect on the eigenstates, in addition to the orbits themselves. A local density operator, constructed from

a band of energy eigenstates, is strongly scarred by short periodic orbits. We also demonstrate a relation
between the quantum eigenvalue spectrum and the actions of the periodic orbits.

PACS numbers: 05.45.+b, 03.40.Kf, 03.65.—w, 05.70.Jk

There has been considerable interest and effort direct-
ed toward understanding the quantum-mechanical ana-

log of classical chaotic dynamics. ' For quasiperiodic
systems, the connection between classical and quantum
mechanics is made via the Einstein-Brillouin-Keller
quantization conditions for classical invariant tori. The
development of a semiclassical periodic orbit (PO)
theory by Gutzwiller was a major advance towards the
goal of a general approach, applicable to both regular
and chaotic systems. In the PO theory, the connection
between classical and quantum mechanics is made
through classical periodic orbits, which appear in the
trace of the semiclassical energy Green's function. In

principle, this approach allows the calculation of semi-
classical eigenvalues for chaotic systems, where the ab-
sence of invariant tori precludes Einstein-Brillouin-
Keller quantization.

In contrast to properties of the energy spectrum, rela-
tively few formal results addressing the influence of clas-
sical mechanics on the eigenstates of chaotic systems
have been obtained. A number of numerical studies
have investigated the structure of chaotic eigenstates,
including the effect of cantori and broken separatrices on

the quantum dynamics of driven anharmonic systems,
studies of quasienergy eigenstates of the standard map,
and investigation of chaotic states in coupled oscillator
systems. ' Heller has shown that wave functions of the
stadium often have a large probability density in con-
figuration space along certain unstable periodic orbits
("scars")."

In this Letter, we study the quantum eigenstates of a
globally chaotic system. We observe the effect of period-
ic orbits in the form of configuration space scars, similar
to those described by Heller" for the stadium. By using
a quantum surface of section (QSOS) ' based on the
harmonic oscillator coherent state representation, ' we

show that an even more convincing and unambiguous
picture of the connection between unstable periodic or-
bits can be obtained. We find that the stable and unsta-
ble manifolds of the orbits play an important role in the
phase-space structure of the eigenstates, in addition to

the orbit itself. We also examine the eff'ect of periodic
orbits on the phase-space structure of a local density
operator, composed of a sum of contiguous energy eigen-
states. Earlier investigations of the effect of classical
chaos on quantum eigenstates have focused on systems
with considerable persistent phase-space regularity
(see, in particular, the important work of Davis' ). An
exception is Heller's work on the stadium, a completely
chaotic system with no invariant tori. However, the sta-
dium is a special system which possesses long-time corre-
lations due to arbitrarily long regular segments of the
chaotic trajectories. ' No previous study of the influence
of classical mechanics on eigenfunctions has treated a
system as chaotic as the one considered here.

We study the classical and quantum mechanics of the
Hamiltonian '

1 2 2 1 2 2 1
—a—(p,2+

py2) +—x 'y '+ (x 4+y '),

where a=0.95. This Hamiltonian exhibits mechanical
similarity: The properties of the classical motion at any
energy can be determined by scaling from E =1. There
are thus no complications due to the dependence of
phase-space structure on energy.

For a=0.95, we have characterized the classical dy-
namics at E 1. The phase space consists almost com-
pletely of a single stochastic region. We have calculated
a number of periodic orbits of (1). We find two stable
periodic orbits, each lying along the coordinate axes.
These orbits have residues' of 0.996 (i.e., are barely
stable), and surrounded by very small regions of quasi-
periodicity, which cannot support an Einstein-Brillouin-
Keller eigenstate and are barely visible on a surface of
section. All other periodic orbits of (1) we found are un-

stable. The lowest-period orbits lie on the diagonals

y =+'x. Each of these "diagonal" orbits has a residue
of approximately —59. In addition to locating these and
other periodic orbits, we determined the associated in-
variant stable and unstable manifolds.

We have calculated the quantum eigenvalue spectrum
and many eigenstates of (1) by diagonalization in a
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FIG. 1. The configuration-space probability density of the
77th OOE state. The energy of this state is 49.468.

FIG. 2. The periodic orbits that influence the 77th OOE
state and the E 49.468 energy contour.

two-dimensional harmonic oscillator basis. ' The accu-
racy of the results was verified by comparing with an in-

dependent calculation of eigenvalues and eigenstates by
the Feit-Fleck method. ' To investigate the effect of
classical phase-space structure on the eigenfunctions, we

plot configuration space probability densities. In addi-
tion, we compute QSOS, ' defined as the squared over-

lap of eigenfunctions with a harmonic oscillator coherent
state, ' centered at the point on the classical surface of
section (x,p„) with y =0, and p~ & 0 determined by en-

ergy conservation.
Many of the quantum states are strongly peaked on

classical periodic orbits. Figure 1 shows the configura-
tion space

~ y ~
for such a state, which has high density

along the diagonals y ~x and also around a box-
shaped curve. Figure 2 shows the corresponding periodic
orbits, along with an equipotential contour. The quantal
probability density is enhanced along the classical
periodic orbit.

An even more striking correlation is seen in phase
space, on the surface of section. Figure 3 shows a con-
tour plot of the QSOS of the same state, together with
the corresponding periodic orbits (points) and segments
of their stable and unstable manifolds (thick solid
curves). The QSOS is dominated by large peaks cen-
tered directly on the periodic orbits. Away from the
periodic orbits, the probability density remains high
along the stable and unstable invariant manifolds. This
added structural element is not apparent in the
configuration-space plot, which illustrates the utility of
the QSOS representation. The state in Fig. 3 is not asso-
ciated with a separatrix between distinct types of classi-
cal motion (see Ref. 10 for examples of this type of
state); it is influenced by the stable and unstable mani-
folds of an isolated unstable fixed point, which is itself
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FIG. 3. Contours of the QSOS of the 77th OOE state super-
imposed on the separatrix manifolds of the "diagonal" and
"box" orbits.

embedded in a sea of chaos.
For this particular state, we find that the actions of the

scarring orbits are close to quantizing values. Although
this result is suggestive, we have not found such a rule to
reliably predict which states are scarred by a given
periodic orbit.

The QSOS of many eigenstates of (1) are strongly
peaked on the diagonal box, and other known orbits. A
significant fraction, however, are not obviously related to
any classical periodic trajectories. These may be related
to long period or highly unstable motion, which we have
been unable to locate, or they may simply be unrelated
to the classical motion.
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FIG. 4. The QSOS of the LDO for all eigenstates in the
range (37.571,40.096). The thick dark lines are the separatrix
manifolds of the diagonal orbits.
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(2)

where the sum includes all states in a selected energy
range. The QSOS of the LDO is simply the sum of the
QSOS of the individual states. We find that it is very
strongly influenced by short-period orbits. A typical case

The PO theory of energy spectra relates the entire
manifold of eigenvalues to a complete sum over all or-
bits, and thus does not imply any relation between indi-
vidual eigenstates and particular classical trajectories.
However, the work of Du and Delos suggests a general
connection between periodic orbits with short periods
and quantum mechanical quantities which are averaged
over a correspondingly broadened range of energies. In
this spirit, we examine the behavior of groups of nearby
eigenstates, defined by a local-density operator (LDO)

is shown in Fig. 4. Here, a sum of 42 eigenstates with

mean energy E =38.83 has been performed. If the indi-
vidual eigenstates are randomly peaked, the LDO should
tend to be featureless. Density arising from fluctuations
not associated with the organizing classical phase-space
structure should lead to a smooth and uniform QSOS,
while recurrent quantum structure associated with orbits
and invariant manifolds should lead to a buildup of den-
sity. This is indeed what we observe: The QSOS is
sharply peaked on the diagonal periodic orbits and their
associated manifolds. The uninterpretable structure of
many of the individual eigenstates has been smoothed to
give a featureless background. It should be noted that
only 4 of the 42 states in the sum were themselves local-
ized on the diagonal orbits. We have studied a number
of different energy regimes, and in all cases, the LDO
QSOS is very strongly correlated with the short-period
orbits. Very recently, Bogomolny introduced a theory of
scarred eigenstates which predicts that groups of states
within an energy range should be localized near short
periodic orbits. This is also suggested by unpublished
work of Delos. The present work provides a numerical
verification of these important formal results for a
strongly chaotic system.

The PO theory predicts that the semiclassical density
of states

n(E) =gb(E Ek), —
k

(3)

where Ek is the kth quantum eigenvalue, can be rewrit-
ten as

n(E) n(E)+g g a, (E)cos{j[S„(E)—p„]J, (4)
r j 1

where r labels the primitive periodic orbits and j labels
the repetitions of these primitive orbits. n(E) is the
average (Thomas-Fermi) density of states, and S,(E)
and p„are the action and Maslov index of the rth orbit,
respectively. By use of the scaled energy variable

g =E i and the scaling property of the classical actions,
S(E) E i S(1), Eqs. (3) and (4) can be written

—n(1) =g g a„(1)cos{j[gS„(1)—p„]] .
a(g-gk)

4k ( rj-i (5)

By Fourier transformation with respect to (, the left-
hand side of Eq. (5) becomes

i~4k —2nn(1)6(o)) .
4 k

The peaks in the Fourier transform of the right-hand
side of Eq. (5) occur at integer multiples of the classical
actions cf periodic orbits at energy E =1. To examine
the nature and validity of the semiclassical PO expres-
sion, we have computed the Fourier transform of the ex-
act scaled eigenvalue of (1), using the first 482 con-
verged levels. This result is shown in Fig. 5, along with

the predicted locations of peaks based on the classical ac-
tions at E =1. A close agreement is clearly apparent; we

believe the unexplained peaks are associated with un-

known periodic orbits. '

To summarize, we observe, for the first time, a clear
correspondence between quantum eigenstates and classi-
cal periodic orbits of a strongly chaotic system with a
smooth potential. We emphasize that we are not seeing
the association of quantum density with residual regular
phase-space structure, such as resonance zones or can-
tori. ' Rather, we see connections between classical
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FIG. 5. The power spectrum of the scaled energy spectrum.
Arrows mark integer multiples of the scaled action of periodic
orbits. Labeling of arrows: S—the stable x- and y-axis orbits;
1 —the least unstable orbit; 2—the next least unstable orbit;
etc.

'See, for example, Chaotic Behavior in Quantum Systems,
edited by G. Casati (Plenum, New York, 1985).

and quantum mechanics in the almost complete absence
of such structure. This extends the numerical evidence
for scars of periodic orbits beyond the special case of the
stadium. " The effect of short periodic orbits is even
more apparent in the LDO, a result which is consistent
with very recent formal results of Bogomolny and
Delos. We anticipate that the numerical results ob-
tained here will stimulate further analytic developments.
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