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Computation of the ac Stark Effect in the Ground State of Atomic Hydrogen
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Using a Sturmian function expansion we have computed the nth-order coefficients E„(co), for
2~ n ~ 22, in the perturbation expansion of the ac Stark effect in the hydrogen 1s state. An "eA'ective
convergence" similar to that in the dc case is observed. A parametrization of these coefficients, based
upon the analytic structure of the Coulomb Green's function, separates the rapid oscillatory resonant be-
havior and the smooth background variation with respect to co.

PACS numbers: 32.80.Rm, 32.60.+i

The applicability of perturbation theory to the descrip-
tion of atomic systems in intense laser fields (intensity
I & 10' W cm ) is a subject of continuing concern.
Substantive arguments have been advanced ' that pertur-
bative treatments are inadequate for the analysis of the
current generation of experiments on multiphoton ioniza-
tion of atoms. These arguments have been robbed of
much of their force by an analysis of the eFects of time
evolution of the laser pulse, which indicates that, for
pulse rise times longer than —10 ' s, the ionization
stage of the atom increases with laser intensity so as to
maintain the validity of perturbative description. The
results of more recent experiments with subpicosecond
pulses have been interpreted in terms of field-shifted
atomic resonances, a picture which suggests the impor-
tant role of the atomic structures in spite of the infiuence
of the intense field. Therefore, some form of perturba-
tion theory based on a zeroth-order atomic system cou-

pled with a radiation field may be appropriate. Howev-

er, all these discussions have taken place without exten-
sive reference to quantitative calculations, for few actual
computations of high-order processes (photon number
n & 2) can be found in the literature. We are develop-

ing a method for such calculations in atomic hydrogen,
and report here some initial results: nth-order
frequency-dependent level shifts E„(to) of the ground
state, for n ~ 22.

We proceed from standard expressions of perturbation
theory. Let HO Hatom+Hrad 2 V —r '+boa a be
the zeroth-order Hamiltonian (in a.u. ) for a hydrogen
atom in a radiation field of frequency m, and let V=r. F
be the interaction that is treated perturbatively, with
F=i(2ttto/L )'I e(a —a ) the electric field operator.

+Z g E2 ; J(~)(+ I~,)—-
i=1 j I

(2b)

are the 2mth-order coe5cients in the Rayleigh-
Schrodinger expansion for the energy of the atom:

E(~) =Eo+ g E,.(~)F'-, E.= —
—,
' .

m=1
(3)

We have assumed that the intensity is high enough so we
can neglect the depletion of the photon field and define
the classical field amplitude as F= (8ttNto/L ) 'I .
Equation (2b) is derived by use of the remainder theo-
rem, which enables one to determine the 2mth-order
energy from the perturbed wave functions of order ~ m.

We treat the case in which the radiation field is linearly
polarized. The zeroth-order ei~enstate is I @o)
=

Ittto, o(r)) IN), where po, o(r)=tr ' e "is the ls state
of hydrogen and N is the occupation number of the radi-
ation field. The mth-order perturbed state 9 is repre-
sented as

m

k —m

where k runs in steps of 2. We require that (+ I +o)
=8 o. The atomic wave functions tS k(r) then satisfy
the inhomogeneous equations

~EO+ kto Hatom~0m, k r' &(pm —1,k —I + Pm —I,k+ I )

m/2

+ g Ep)(co)ttt 2J k, (2a)-
j I

where the coefficients

E2 (co) =& p ir F/F I + -i&

m m —
1
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k(r) =r ' g g A"'I Sj (r)Y(p(r" i),
Imin ~ I+ ~

(4)

where the Sturmian radial functions S„)(r) are as
defined in Ref. 8:

' 1/2

~( ) (n —I —1)!
2(n+l)! (g& ) I + 1e —(r/2

xL„(21+'&(g ),
and I;„=0or 1 for m =even or odd. Substitution of (4)
into (2a) yields, for each value of I, a separate set of
linear equations that can be solved for the coefficients

Am, p, for n =l+1, . . . , %,.
The Sturmian functions have several useful properties.

They provide a denumerable basis set that is complete
with respect to square integrable functions. On the other
hand, they resemble the radial eigenfunctions P„I(r) of
the bound states of hydrogen: when the parameter
(=2/n, S„$ (r) =(n/J2)P„I(r). Thus g can be chosen
so that all states of hydrogen with a given principal
quantum number are represented exactly within the
Sturmian basis; alternatively, ( can be chosen to give
certain of the p I, the correct exponential behavior at
large r: /=2/(I —2kro)'/. The matrix elements of all
operators in Eqs. (2) are simple functions of n and I (i.e.,

square roots of polynomials of degree ~ 4), and they are
banded by the selection rule ~/3n

~
~2 (and, trivially,

hl = ~ 1 for the electric dipole operator). This banded

TABLE 1. Energy coefficients, E„, as defined in Eq. (3), for
the hydrogen ls state. The coefticients of the dc case are mul-

tiplied by a factor f„defined as f2 = (2m)!/[(m!) 2 ].
Numbers in parentheses show powers of ten.

Following Dalgarno and Lewis, we regard Eq. (2a) as

a differential equation to be solved in its own right,
without explicit reference to the spectrum of the unper-
turbed atom. This outlook has been adopted previously

by Gontier and Trahin, who have numerically integrat-
ed the differential equations. Our approach to the solu-

tion is to expand the p I, in a basis of Sturmian func-
tions:

m &s

10

10

Q 10
~ W

10
0

is

12
10

structure greatly facilitates the inversion of large ma-
trices. Finally, a truncated Sturmian basis yields the ex-
acr solution to Eqs. (2) in the dc limit (co 0), for /=2.
We have used this fact to check the stability of our nu-

merical algorithms, and have computed E (ro =0) for m

up to 200. The results agree to all digits cited in previ-
ous calculations (for m —50), and agree with known

asymptotic formulas. ' " We are restricted in the
present treatment to cases in which the p I, are L func-
tions, which implies that ink (

~ En ~, the ionization litn-

it.
In the results presented here, the number IVs of Stur-

mian basis functions for each value of I is 200. This
number is determined by qualitative observations of con-
vergence and stability, as is the value of g, which ranges
between 2 and 0.5. Our computations are carried out on
the CYBER 205 computer at the National Institute of
Standards and Technology. Less than 5 s of central pro-
cessor unit time is required to compute E22, from per-
turbed wave functions of up to 11th order.

In Table I, we give the calculated energy coefficients
for the fundamental frequency of a Nd-doped yttrium-

Order n

2

4
6
8

10
12
14
16
18
20
22

dc

—1.125 000
—2.083008 (1)
—1.533679 (3)
—2. 171 742 (5)
—4.787 310 (7)
—1.494 801 (10)
—6.268458 (12)
—3.406609 (15)
—2.335 214 (18)
—1.975 272 (21)
—2.023 907 (24)

X =1064 nm

—1.137437
—2.241 173 (1)
—1.894898 (3)
—3.397 329 (5)
—1.076252 (8)
—5.711 314 (10)
—5.119799 (13)
—8.330576 (16)
—2.543771 (2O)
—2.533 150 (24)
—1.8O7757 (29)

A, =533 nm

—1.176631
—2.840897 (1)
—4.094904 (3)
—2.762 216 (6)
—9.404516 (9)

10
I I I l I I I I I i I
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Order
FIG. 1. The threshold intensity for each order of perturba-

tion as determined by I2 =3.5x10' E2 /E2~+2. The thresh-
old intensity for the dc case is defined, for the sake of compar-
ison, as 12~ =3.5X10' E2~fq~/Fppy+g2~+2 and the scaling
factor is f2 =(2m)!/[(m'!) 2 l.
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FIG. 2. The magnitude of the level shift of H ls is comput-
ed bp perturbation theory up to nth order, AE,
= i+I,"=i Etk(ru)F "i, for m=0.043 a.u. (the Nd: YA16 fre-
quency), as a function of the light intensity I in W cm, for
n ~22. The surface is arbitrarily truncated for hE, & 1 a.u.
It is evident that for I( 10' perturbation theory exhibits
"eA'ective convergence" as discussed for the dc case in Ref. 11.

aluminum-garnet (Nd:YA1G) laser and its second har-
monic, including the dc case as a comparison. In Fig. 1,
we plot the "threshold intensity" versus the order of per-
turbation for these three cases. This threshold intensity
corresponds to the square of field strength determined by
F (a.u. ) =E„/E„+2. it is the intensity at which the
(n+2)th- rdoer shift becomes equal to the nth. This re-
sult is of practical interest in indicating the range of in-
tensities within which the level shifts of ground-state
atoms may be adequately described by low-order pertur-
bation theory. Our calculation indicates that, for the
frequency of a Nd: YA1G laser the threshold intensity for
the second-order perturbation is 1.77&&10 W/cm . At15 2

that intensity, the perturbation series diverges rapidly
with increasing order.

It is well known" that the Rayleigh-Schrodinger per-
turbation expansion of the dc Stark is asymptotic: Al-
though the series is divergent, its finite partial sums ap-
proximate the exact result in weak fields. On the other
hand, there exists a proof that in the ac case the expan-
sion converges, ' though the radius of convergence is un-
known. Our results for the first 22 terms of the expan-
sion show behavior similar to that of the divergent dc
case. Figure 2 shows the contribution of the first n terms
in the perturbation expansion at the Nd: YA16 frequen-

cy, for 2 ~ n ~ 22, in the intensity range 10' ~ I ~ 10'
W/cm . The range of n covers all orders for which the
level shift is real: Twelve-photon absorption ionizes H
1s, so that the 24th-order level shift has an imaginary
part. For intensities below the baseline of the "butte" in

this figure the level shift shows an "eA'ective conver-

FIG. 3. The second-order energy coefficient, E2, as a func-
tion of laser frequency, on the scale of eA'ective principal quan-
tum number v=(1 —2') 'i. The dots represent the results
of our calculation. The circles are the results from Ref. 13, in-
cluded as a comparison. The line is obtained from the equation
and the parameters in Table II.
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FIG. 4. The fourth-order energy coefficient, E4, as a func-
tion of laser frequency, on the scale of eAective principal quan-
tum number v=(1 —4') 'i'. The dots represent the results
of our calculation. The circles, which lie too close to resolve,
represent the results from Ref. 14, included as a comparison.
The line is obtained from the equation and the parameters in

Table II.

gence" similar to that encountered in the dc case, " and
14we therefore advance the conjecture that for I & 10

W/cm the partial sum is a good approximation to the
exact level shift. This conjecture remains to be tested by
the nonperturbative calculations, such as done by the ro-
tated coordinate method, or by experimental determina-
tion of the level shift. The asymptotic limit (n~ ~) of
this baseline determines the radius of convergence of
perturbation theory. We do not know how the higher-
order complex coefficients will behave, but naive extrapo-
lation of this baseline would give a radius of convergence
corresponding to I-10 W/cm .12 2

Systematic study of the ac level shift is complicated by
the strong frequency dependence of the coefficients. This
dependence is greatly simplified by plotting E2„(ro) as a
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TABLE II. Asymptotic parameters for E2, E4, and E6 from
nonlinear fitting. In the asymptotic region t.' 0, E2„can be
reproduced by E2„=ao+a &e+a2e'+ (ho+ b ~a+b2e )cot(rrv)

Parameter

ap
al
a2
bp

bl
b2

1.077 552
—2.525 347
—4.571 427

1.227783
—8.901 760

4.923 770 (1)

E4

1.379988 (2)
1.275 521 (3)

—8.393799 (3)
1.598350 (2)

—8.934785 (2)
1.166016 (3)

3.013495 (4)
1.094091 (6)
1.076715 (7)
4.378 240 (4)
5.027776 (5)
1.879651 (6)

Fitting range 4 & v & 11 5& v&11 5& v&11

function of v=(1 —2nra) '~, which is the effective prin-

cipal quantum number of the highest virtual state
reached in the n-photon absorption process. The coef-
ficients E2 and E4 then exhibit the periodicity of a co-
tangent function, as shown in Figs. 3 and 4. This behav-

ior has been derived for n =1 by Khristenko and Vechin-

kin, ' from an asymptotic development of their closed-
form expression for E2. Closed-form expressions are un-

known for n ) 1; however, we find that the essential re-
sult can be generalized by considering the analytic struc-
ture of the energy-dependent Coulomb Green's function

G,(r,r'). This structure has been discussed in some de-

tail by Greene, Fano, and Strinati. ' Following their no-

tation, we find that, for e= —1/(2v ) = ——,
'

+nba (0,
G,(r, r') can be rewritten as

where the functions f, g, Q(e'), and A(e) are analytic
as e 0. Details of the Green's function expansion for
E2„(ra) can be found in Refs. 14 and 16. We consider
here the case in which resonances occur only in n-photon
absorption. In this case, there is only one singular term
in that expansion, which can be expressed as
( Pp ~

VG (r, r') VW~ 'Pp), where W is a (2n —2)-fold
operator product of V and Green's functions with ener-

gies e'( e. Equation (6) then implies that

E2„(ra ) =a 2„(e)+ b 2„(e)cot (xv), (7)

where a2„(e) and bz„(e) are analytic functions of e near
a=0. We have therefore fitted our computed energy
coefficients with the form (7), taking a2„and b2„ to be
polynomials in t. of degree 2. The results, shown in

Table II, can be used to reproduce the second-, fourth-,
and sixth-order energies quite accurately over the

G,(r, r') =zf p(r ( )go(r & )

+z[Q(e)+A(e)cot(zv)]f (r)f (r'), (6)

asymptotic region and to extrapolate these quantities all
the way to the ionization limit. Extension of this ap-
proach to higher orders is straightforward, though inter-
mediate resonances introduce additional frequency
dependence.

In conclusion, we have carried out calculations of the
nth-order ac level shift of H 1s for n & 20. These results
provide the first quantitative evidence for eA'ective con-
vergence of perturbation theory. Fits with analytic for-
mulas permit the coefficients to be represented efficiently
over a wide range of photon frequency.
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