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Measurement of the de Sitter Precession of the Moon:
A Relativistic Three-Body Effect
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We analyzed lunar laser-ranging data, accumulated between 1970 and 1986, to estimate the deviation
of the precession of the Moon's orbit from the predictions of general relativity. We found no deviation
from this predicted de Sitter precession rate of nearly 2 angular sec per century (sec/cy), to within our
estimated standard error of 0.04 sec/cy. This standard error, 2% of the predicted effect, incorporates our
assessment of the likely contributions of systematic errors, and is about threefold larger than the statisti-
cal standard error.

PACS numbers: 95.10.Jk, 96.20.—n

One of the dynamical consequences of Einstein's
theory of general relativity, noted first by de Sitter, ' is a
non-Newtonian precession of the Moon as it orbits the
Earth in a system freely falling in the gravitational field
of the Sun. de Sitter noted, too, that the magnitude of
this "geodetic precession" would be approximately 2
angular sec per century (sec/cy). About 50 yr later, in

the late 1960's, one of us (I.S.), with Martin Slade and
others, undertook the task of reanalyzing the world's ac-
cumulation of optical observations of the Moon, about
350000 in all, spanning the period from 1750 to almost
1970. Also included in the analysis were radar observa-
tions of the Moon and tracking data of the Surveyor
spacecraft. The goal was to detect the predicted geodetic
precession reliably. We failed: The result obtained,
1.5~0.6 sec/cy, was of only marginal reliability. We
also looked into the possibility of detecting the contribu-
tion of the geodetic precession to the total precession of
the Earth's spin axis. For this purpose, we considered
using a combination of seismic models of the Earth and
data from the tracking of artificial satellites to determine
accurately the Newtonian contribution, which depends
most importantly on the fractional difference of the prin-

cipal moments of inertia of the Earth. The total preces-
sion was already known with sufficient accuracy and
would be known even better from the accumulation of
very-long-baseline interferometry (VLBI) observations
of compact extragalactic radio sources. This approach,
too, was unavailing: The Newtonian contribution to the
precession could not be determined with the required ac-
curacy. Another possibility considered by one of us

(I.S.) was to determine the fractional difference in the
Earth's moments of inertia from its effect on the Earth' s

principal, 18.6-yr, nutation. The amplitude of this nuta-
tion term could be measured with the requisite accuracy
from the VLBI observations of the extragalactic sources.
A covariance analysis, and a consideration of the
relevant uncertainties in other aspects of the needed
model of the Earth, showed that this approach might be
feasible. VLBI data over a sufficient time span and of

sufficient accuracy will have been gathered within a few
more years for a useful attempt to be made at this deter-
mination. On a somewhat longer time scale, the planned
National Aeronautics and Space Administration gyro-
scope experiment holds promise of far higher accuracy.

The main hope for early success lay in laser ranging to
the optical corner reflectors placed on the Moon by the
Apollo astronauts in the late 1960's and early 1970's. It
was clear that an approximately 18-yr accumulation of
such ranging data would be required to separate the de
Sitter precession reliably from any contribution due to
the uncertainty of the amplitude (and phase) of the
18.6-yr period "classical" term in the motion of the lunar
node. In the early 1980's, as this accumulation interval
drew to a close, the present authors began a special
analysis of the lunar laser-ranging data to try to measure
this geodetic precession. Meanwhile, as we were com-
pleting this analysis, Bertotti, Ciufolini, and Bender
(BCB) inferred the presence of the geodetic precession
from a lack of any known problems in the comparisons
of (1) lunar laser-ranging (LLR) data with the general-
relativistic theory which predicts this precession, and (2)
the results, deduced from the LLR data, for the time
dependence of the orientation of the Earth with inde-

pendent determinations of this dependence. Their es-
timated uncertainty for each method was 10%; i.e., they
imply that any larger deviation between the predicted
geodetic precession and that affecting the observations
would have been noticeable from such comparisons.

In the remainder of this paper, we (1) discuss our
parametric model of the Moon's motion, with emphasis
on the aspect that allows us to distinguish, as directly as
feasible, the contribution of any geodetic precession; (2)
describe the data sets we analyzed to determine the geo-
detic precession; (3) present the result we obtained for
the geodetic precession, with special emphasis on the
contributing source to its overall uncertainty; and (4)
comment on the paper by BCB, in particular demon-
strating that they significantly underestimated the uncer-
tainties accompanying their approaches. In this last dis-
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cussion, we show why the uncertainties for their ap-
proaches exceed those in ours by at least thirtyfold for
the first of their two methods and by about tenfold for
the second.

Our model of the Moon's motion consists of two cou-
pled sets of differential equations, one set describing the
orbit and the other the rotation. The coupling is, of
course, supplied by the nonspherical figure of the Moon,
which affects both motions. The orbital equations are
those of a general relativistic three-body system in a
parametrized post-Newtonian (PPN) framework. We
include the perturbations due to the (1) leading terms in

the spherical-harmonic expansion of the gravitational
fields of the Earth and Moon, (2) Newtonian effects of
the other planets, and (3) drag from tides on Earth.
Similarly, the rotational equations include the torques
produced by the Earth and the Sun on the leading mo-
ments of the Moon's figure and the effect of the anelasti-
city of the Moon. The Earth's torque on the Moon in-

cludes the effect of the second zonal harmonic of the
Earth's gravitational field.

Our model also includes the equations for the partial
derivatives of the motions with respect to the (large) set
of relevant adjustable parameters. We integrate the
whole ensemble of equations simultaneously by numeri-
cal methods to obtain a tabulation as a function of time
for the positions and velocities of the relevant bodies, and
for the partial derivatives with respect to these parame-
ters. These latter include the mass of the Moon and of
the Earth-Moon system; six initial conditions each for
the heliocentric motion of the Earth-Moon system, for
the Moon's geocentric motion, and for the Moon's rota-
tion; a coefficient for the tidal drag on the Moon; the
Moon s moment-of-inertia ratios and its gravitational
harmonic coefficients through degree and order three;
the PPN metric parameters P and y; the rate G of a pos-
sible secular variation in the gravitational coupling con-
stant G; and an ad hoc parameter h related to any extra
precession of the Moon's orbit about the ecliptic pole
that is not included in, or cancels part of, the predicted
general-relativistic geodetic precession.

The partial derivatives for other relevant parameters,
those that either do not affect at all, or do not affect
significantly, the motions of bodies, are easier to corn-
pute. These latter parameters include instrumental
biases; the coordinates of the laser-ranging sites and of
the retroreflector locations; Love numbers for the Earth
and Moon; corrections to universal time (UT1) and to
the Earth's pole position; corrections to the International
Astronomical Union (IAU) values for the constant of
general precession and for the coefficients of the series
expression for the Earth's nutation '; and the scale of the
solar system in light travel time units (i.e., the astronom-
ical unit in seconds).

The parameter h is the key to our study since it is a
measure of the (dis)agreement between the observed
motion of the Moon and the de Sitter precession. We
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formulated the equations of motion in a coordinate sys-
tem rotating in the instantaneous ecliptic at a (variable)
rate h D, where 0 is the de Sitter precession rate. Any
departure in the lunar motion from the de Sitter rate is
characterized by the numerical factor h, where h=0
would be consistent with the prediction from general rel-
ativity and h =1 would imply a 100% error in this pre-
diction.

The de Sitter precession may be thought of as having
contributions from two sources: The first is the effect of
mass on the curvature of space, which results in locally
measured angles differing from those measured with
respect to the fixed stars. The second source, which con-
tributes half as much as the first, is the gravitational
analog of the spin-orbit coupling of an electron in an
atom. In the PPN formalism, the sum of these two con-
tributions is proportional to y+ 2 .

Our primary data set was the 1970-1986 collection of
LLR data, about 4400 echo-delay measurements for
laser signals sent from various sites on the Earth to the
various corner reflectors on the Moon. To aid in distin-
guishing the effects of lunar orbit precession from those
of Earth nutation, we included the results of VLBI mea-
surements in the form of (loose) a priori constraints on
the corrections' to some of the coefficients of the
shorter-period terms (annual, semiannual, and fortnight-
ly) in the IAU series" representing the Earth's nuta-
tions. In part of our analysis, the "local" part, we also
used the orbits and masses of the other planets and of
relevant asteroids as obtained from our separate analysis
of radar and spacecraft-tracking data. In the "global"
part, we analyzed virtually all of the solar-system data
simultaneously. In no case, however, did we include the
optical observations of the Moon, since their standard er-
rors are so large as to outweigh the advantage of the long
time span they cover. '

We started our local analysis with a nominal value of
zero for h and appropriate values for the other parame-
ters, and applied our weighted-least-squares filter ' to
obtain estimates for all the relevant parameters, as well
as to obtain the corresponding standard deviations and
normalized correlation matrix. Of course, in this ap-
proach, we set the PPN parameters y and P to unity and
estimated neither. We found no significant departure of
the geodetic precession of the Moon from that predicted
by general relativity: h =0.019~ 0.010 (statistical stan-
dard errors are given here and hereafter unless otherwise
noted). We also repeated this analysis, with h=0, and
estimated in its place an ad hoc coefficient X, multiplying
the relativistic terms in the equations describing the
Moon's orbital motion; we obtained k = 1 —0.010
~ 0.011, consistent with general relativity. In both anal-
yses we estimated a total of 335 parameters, including
250 representing corrections to the temporal behavior of
the Earth's orientation, and utilized all the LLR observa-
tions. We also estimated h and A, simultaneously and
found the magnitude of their normalized correlation to
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be approximately 0.5.
These local analyses, as indicated, utilized separately

determined values for such other solar-system parame-
ters as the masses and orbital initial conditions for the
other planets. We therefore also carried out a global
analysis, to be described in detail elsewhere, using all of
our data —LLR as well as radar and spacecraft-tracking
data for the planets —and solving for all relevant param-
eters simultaneously: a total of about 20000 observa-
tions and about 1300 parameters, including -900 to
represent the topography on Mercury and Venus. Al-
though this latter approach is philosophically preferable,
in practice it is not distinguishable: We obtained
h =0.002+ 0.006, not significantly different from the re-
sult from the local analysis. However, because of possi-
ble systematic errors, discussed below, neither of these
statistical standard errors can be accepted as, or simply
related to, the true uncertainty.

We attempted to account for the systematic errors in

the global analysis by considering first the changes in our
estimate of h which would result from large, but not
"unreasonable, " imposed changes in our estimates of
other parameters. The largest effects come from those
parameters that are highly correlated with h or that have
"realistic" uncertainties significantly larger than the sta-
tistical standard errors, because of correspondingly large
sensitivities either to systematic errors in the data or to
omission from the model. This study showed that the
largest of the effects on h was under 0.01 and virtually
all were well under this value.

Second, we repeated our weighted-least-squares global
analysis, but with different subsets of the data and of the
parameters. For example, we split the LLR data into
two "halves" according to time of year: approximately
January-June (about 1900 observations) and July-
December (about 2500 observations), and included one
half at a time in otherwise identical analyses. The
respective estimates for h were —0.023+'0.010 and
0.016~0.008. We also investigated the effect of the use
of progressively shorter spans of LLR data in both the
global and the local analyses. The results demonstrated
that having LLR data over a significant fraction of 18 yr
is crucial to detecting the de Sitter precession reliably.

We attempted to quantify any systematic effects that
might be present in the LLR postfit residuals from the
local and global analyses by (1) forming a histogram of
the normalized residuals (each residual divided by the
"final" standard error of the observation), and (2)
Fourier analyzing the residuals. The results show (1)
very nearly Gaussian distributions, with (2) no

significant periodicities present. The interpretation of
the Fourier transforms, however, is complicated by the
data having been taken at irregular intervals, and with

fortnightly gaps. In addition, the fortnightly frequency
is strongly absorbed by the lunar model, as are the
monthly and yearly frequencies.

On the basis of all these studies, we conclude that a re-
liable estimate of the "true" standard error of our mea-
surement of the de Sitter precession is 2% of the predict-
ed effect, i.e., h =0.00+ 0.02.

We turn now to a discussion of the BCB paper. Their
argument consisted of two parts; we deal with each in

turn. The final argument held that any error in the
general-relativistic prediction of geodetic precession
would appear as an increase in the LLR postfit residuals,
since the model used to analyze the data was consistent
with general relativity. In particular, BCB considered
the difference between the Moon's predicted mean peri-
gee rate and the Sun's mean motion, and calculated the
error in the difference that would increase twofold the
rms of the residuals for two selected half-year periods.
This approach runs the risk that the full effect of mask-
ing (see below) on the estimate of the parameter of in-

terest may be far more severe than anticipated. In this
case, considering the full data and parameter set, we find

that the cumulative effect of all other parameters leads
to the statistical standard error for h being 24 times as
large in our global analysis as it would be were only h

being estimated. This "masking factor" represents the
extent to which a linear combination of changes in the
other parameters can be made to reproduce the signature
of h and has the following consequence in the analysis of
the LLR data: The mean-square residual R, which is

the sum square of the postfit weighted residuals per de-
gree of freedom, has a quadratic dependence on h:
R —1+2h for the LLR data set. One might expect R
to be unity. However, the a priori knowledge of the
standard errors in the LLR measurements, primarily
from instrumental effects, is not precise; only an increase
in R above the present level by more than 30% would be
a reasonable indication of a problem'; in fact, an in-

dependent study of the residuals' shows that, for
different large subsets of the data, R varies, but not
monotonically with time, from 0.7 to 1.5. Our own ear-
lier analysis showed variations in R, for somewhat
different subsets, from about 0.6 to 2.0, also exceeding
+ 30%. Systematic trends in the residuals would not be
discernible easily, in view of the very uneven temporal
spacing of the observations. An increase in R of more
than 30% corresponds to a value of h greater than 0.6,
implying, therefore, an uncertainty of at least 0.6 in h if
determined via this method. BCB indicated that their
result had an uncertainty equivalent to 0.1, but, as they
stated, this value was not based on any detailed analysis.
BCB did not examine any residuals; as noted above, the
only statistic they considered was the rms of residuals for
certain portions of the data. It would appear that the
main problem with their assignment of a standard error
was their implicit assumption that the effect of masking
would be no more than a factor of 2. Moreover, a
method based, as is BCB's, on the rms of residuals could
not take significant advantage of a "square root of n"
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reduction factor in the statistical standard error of the
result, even were systematic errors not a factor, because
of the limit set by the imprecise knowledge of the mea-
surement standard errors.

The second BCB argument held that any (large)
departure from the de Sitter precession would have been

evident in the comparison between the mean rates of
change of UT1, determined separately from LLR and
from VLBI data. This idea is basically sound, but the
estimated accuracy suffers in the same way, though to a
lesser extent, from the lack of data analysis. To test this
second method, we performed an analysis that attempted
to match the scenario described in BCB. We carried out
a series of analyses, corresponding to our local solution,
but with h constrained to different values in each. Since
we estimate corrections to UT1 values for epochs spread
throughout the time span of the LLR observations, we

found the weighted-least-squares estimate of the slope of
these corrections in each case. Comparison of the results
showed that the estimated UT1 rates reflected only
about half of the imposed offset (h e0) in the geodetic
precession rate, thereby yielding a masking factor of
about 2. We then estimated the standard deviation of h

as that value needed to distinguish, at the 1-standard-
deviation level, the difference between the UT1 rates es-
timated from the LLR data and that estimated from the
VLBI data. We obtained rr(h) =0.2, rather than the
equivalent 0. 1 given by BCB. Thus, their second ap-
proach yields a result still short by about tenfold of the
accuracy achievable by actual analysis of the LLR data.
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