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Neutron Interferometry in a Rotating Frame of Reference
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The physical basis for the description of phenomena by a rotating observer is investigated. A simple,

yet tentative, extension of the hypothesis of locality is used to determine the interference phase shift in-

duced by the rotation of a neutron interferometer. The result consists of the Sagnac term, which is due
to the coupling of the orbital angular momentum of the neutron with the rotation of the frame, and a
new term which arises from a similar coupling because of the neutron spin. The latter effect is generally
smaller than the Sagnac phase shift by the ratio of de Broglie wavelength of the neutron to the dimen-

sion of the interferometer. The possibility of detecting the new effect is brieAy discussed.

PACS numbers: 03.65.Bz, 04.20.Cv

The standard description of physical phenomena ac-
cording to accelerated observers is based on a hypothesis
of locality which states that an accelerated observer at
each instant along its worldline is equivalent to a hy-

pothetical inertial observer at the same event and with

the same velocity as the noninertial observer. This as-
sumption forms the basis for the extension of the
Poincare-invariant theory of relativity to general frames
of reference as well as gravitational fields. ' The results
of measurements performed by the accelerated observer
are therefore identical to those of the inertial observer at
the same spacetime point. The hypothesis of locality
thus restricts the range of elementary measurements that
can be performed by the accelerated observer to those
that are pointwise. That is, the validity of the standard
theory is limited to the prediction of the results of basic
measurements that an accelerated observer can perform
over negligible intervals of time and space.

Consider, for instance, a particle of energy E and
momentum P with respect to an inertial frame Fp (with
coordinates t, x) and a frame F' (with coordinates
t'=t, x') that is related to Fp by a uniform rotation of
angular frequency Q. An observer at rest in F' with ve-

locity v(t) with respect to Fp measures the energy of the
particle. According to the hypothesis of locality, the re-
sult is

E'=y(E —0 L), (2)

since v=Qxx. Here L=xxP is the orbital angular
momentum of the particle with respect to the common
origin of Fp and F'. For a system of relativistic particles
interacting via central forces, the Hamiltonians in F' and

Fo are related by

E'=y(E —v P)

where y=(1 —p ) '1 and p=v(t)/c. This equation
can be rewritten as

y'=Up,

where U is a unitary operator given by

(4)

Newtonian formula. This result is consistent with Eq.
(2) since H' is the generator of the variation of the sys-
tem in coordinate time t', while E' refers to the energy
measured by the rotating observer with proper time z re-
lated to t' by dz =dt'/y. It is important to note that Eqs.
(1)-(3) hold even when 0 is not constant in magnitude
or direction. Moreover, the linear and angular momenta
are independent of the rotation of the frame of reference.
These results for classical particles have counterparts for
classical waves as well, but only in the geometric optics
limit. The corresponding relations for the frequency in
terms of the propagation vector follow from the invari-
ance of the phase of a ray in the eikonal approximation.

The hypothesis of locality is thus valid for phenomena
involving classical particles and rays since their physical
characteristics can be measured at a point in spacetime.
However, wave properties such as period and wavelength
require extended intervals of time and space, respective-
ly, for their determination. It is therefore necessary to
develop a prescription for the measurement of wave
characteristics by accelerated observers in such a way
that the hypothesis of locality is recovered in the eikonal
limit. A natural, though tentative, generalization of the
hypothesis of locality can be stated —for the present
purposes —as follows: Let the wave function tir(t, x) be
the spacetime representation of the quantum state of a
physical system according to static observers in Fp. At
any time t, the wave function y' according to the uni-

formly rotating observers is the same —up to a constant
phase factor —as the wave function according to inertial
observers at rest in a system Fo which diA'ers from Fo
only by a (passive) rotation of angle At. The rotating
frame F' thus passes through an infinite sequence of iner-
tial frames Fo. It follows that

H'=H —O L, (3) U =exp(it n J/h ) (5)

which is the relativistic generalization of the standard up to a constant phase factor and J is the total angular
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momentum operator of the system. The wave function y
satisfies the Schrodinger equation Hy=i iI By/Br, so that
y' satisfies the Schrodinger equation H'y'=i ft By'/Bt' in

the rotating system, where

H'=UHU —0 J (6)

The total angular momentum operator is the sum of the
orbital and spin contributions, i.e.,

J =L+S.
A

The Hamiltonian H'—together with other observables
which correspond to "invariants, " i.e., their transforma-
tion from the inertial frame to the rotating frame can be

A A A A

collectively described via O' =UOU —provides a
description of physical phenomena according to uniform-

ly rotating observers. In particular, vector operators
such as position x', momentum P', and angular momen-
tum J' represent the uniform rotation of the correspond-
ing vectors in Fo. This can be simply illustrated for the
components of an arbitrary vector V' with respect to the
inertia! frame Fo.

V1 =cos(Qt) V1 —sin(Qt) V2,

V2 =sin(Qt) Vi+cos(Qt) V2,
A A

and V3 V3, provided the coordinate axes are oriented
such that the angular frequency vector 0 is along the X3
axis. Moreover, it can be shown that Eq. (6) holds even

when the rotation is nonuniform, Q~ Q(t), in which

case U is the product of operators of the form of Eq. (5)
over time intervals (obtained from ordered partition of
0 t) short enough such that Q may be considered uni-

form over each interval. These results appear to provide
a natural quantum-mechanical extension of the classical
treatment of rotating observers.

A detailed comparison of Eq. (6) with its classical
analog, Eq. (3), reveals, however, the existence of a new

effect associated with the coupling of intrinsic spin with

rotation and given by the Hamiltonian,

tion of the Larmor theorem consistent with Eq. (6) is ob-
tained if qS/2Mc = Q is identified with the Larmor fre-
quency and the gyromagnetic ratio for the particle is as-
sumed to be unity, i.e., p =qS/2Mc, as expected for a
particle with classical "intrinsic" spin.

It is interesting to investigate the observational conse-
quences of the new effect given by Eq. (10) in the con-
text of interferometry with polarized neutrons. Imagine
the interference of neutrons in a rotating frame as de-
picted in Fig. 1. Neutrons from a source are split into
identical semicircular beams which are then made to in-

terfere before being detected. Along the counterclock-
wise (clockwise) path, the neutron spin is assumed to be
polarized parallel (antiparallel) to the direction of rota-
tion of the apparatus. The superposition principle im-

plies that the wave function at the detector (D) is given

by

gD =pr+ prr, (i2)

where "I" and "II" refer to the counterclockwise and
clockwise neutron paths, respectively, originating from
the source (S). Thermal neutrons are generally em-

ployed in neutron interferometry experiments; therefore,
for the purposes of present discussion the quasiclassical
approximation holds and the interference phase shift is

given by b'p' pt' —hatt, where

D!'1It'=„(P' dx' —H'Ck') . (i3)

The neutron beam is split coherently at the source; p' is

the difference between the phase of the neutron wave at
the detector at time tD and the phase at the source at
time ts, tD —ts =nR/v„. Here v„ is the neutron group
speed in the inertial frame. Therefore, the principal con-
tribution to Bp' is caused by the difference in the eigen-
values of the Hamiltonian of the neutron along the
separate paths. It follows from Eqs. (6) and (7) that!Ip'

A

~HSR j'Q (I ) ' S, (io)

where the relativistic factor y has been introduced to in-

dicate the strength of the "interaction" as determined by
the rotating observer. The theory presented here thus
leads to a complete quantum-mechanical analog of the
classical Larmor theorem '; furthermore, the spin-
rotation coupling has an interesting classical analog in

this context. Consider the motion of a particle of mass

M, charge q, and magnetic moment p in a uniform
external magnetic field S. To first order in P and the
strength of the magnetic field, the Hamiltonian for the
particle in the presence of the field is given by

Hg =Ho — P. A —pg
Mc

where A = —,
' Sxx is the vector potential. A generaliza-

FIG. 1. Interference of initially monochromatic thermal
neutrons in a rotating frame of reference. For thermal neu-

trons of wavelength 1I.=1.8 A in a typical interferometer of ra-
dius R=5 cm rotating rapidly at a rate of 10 rounds per
second, !i=RA/c=10 ' so that P/P„=IO 2. The inequality

P(P„ is assumed throughout this paper. In practice, the in-

cident beam is polarized parallel to the rotation axis and rf
coils are used along the clockwise path to invert the polariza-
tion of the neutrons immediately after splitting and before
recombination.
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consists of two parts: bp'=8&8, g», +b'pstt, given by

2fPl
~tl'sagnac (i4)

The Sagnac term has already been observed in experi-
ments at the University of Missouri-Columbia and
MIT. It corresponds to the classical orbital-angular-
momentum-rotation coupling that is evident in Eq. (2),
and is a consequence of the invariance of the phase un-

der coordinate transformations as confirmed by the
theoretical studies of Page (prediction in Ref. 8 of b
x ps, g„„ in the rotating frame) and of Dresden and

Yang (prediction in Ref. 9 of Bps,g„„ in the inertial
frame). The Sagnac term is thus the invariant phase
shift in the eikonal limit. On the contrary, the spin-
rotation coupling term, Stgstt, is a wave effect which
arises from the intrinsic spin of the neutron (h/2). This
effect, which comes about because the total angular
momentum (i.e., orbital plus spin) is the generator for
spatial rotations, is smaller than the Sagnac effect by the
ratio of the (reduced) de Broglie wavelength of the neu-

tron to the diameter of the interferometer,

where m is the neutron mass and 2 =xR is the area of
the interferometer (cf. Fig. 1), and

SgsR =zRII/v„.

D D

L4

of the spin-rotation coupling on the neutron phase shift is

very small and to separate it from the much larger Sag-
nac and other (e.g. , gravitational) effects would require a
very sensitive interferometer. To overcome this diffi-

culty, Werner' has proposed an experiment using a new

type of interferometer which ideally would be insensitive
to Sagnac and gravity' effects and could be used, in

principle, to search for the new effect. Figure 2 illus-

trates sterner's "null interferometer" concept. The con-
struction of large-scale interferometers necessary for
such experiments is now under active development.

The basic significance of the coupling of spin with ro-
tation is that the measured energy of the neutron is
affected not only by its velocity relative to the observer
but by the absolute rotational acceleration of the ob-
server as well. This circumstance is a direct consequence
of the extended form of the hypothesis of locality for
wave phenomena, which has been the starting point of
this analysis. Thus the treatment of neutron inter-

~0SR/btgSagnac (16)

where f/Xt=P = mv„ is the neutron momentum. The
Sagnac effect is proportional to the a~ca of the inter-
ferometer, ~hereas the spin-rotation coupling phase shift
is proportional to the length of the separate neutron

paths.
The rotation-induced neutron phase shifts given by

Eqs. (14) and (15) are valid for thermal neutrons with

P„=v„/c-10 . In fact, these formulas represent the
nonrelativistic limit of 8p'. It follows from Eqs. (6) and

(13) that the (invariant) relativistic Sagnac phase shift
is larger than the low-energy limit, Eq. (14), by a factor
of y„= (1 —P, ) 'i . The relativistic form of the spin-

rotation phase shift is more complicated, however, since
a relativistic description of the interferometric experi-
ment should include, in general, the effect of "mirrors, "
etc. , that guide the neutrons on the semicircular paths in

the interferometer. Thus, in addition to any contribution
from the interaction of the neutrons with the mirrors, an
effective BHTh, m„= —P 'P„(y„—I )0 S must be add-
ed to the inertial Hamiltonian to take due account of
Thomas precession. This would imply, via Eq. (6), that

hHsR =y(hHTt, „—0 S)

represents the effective spin-rotation coupling according
to the rotating observer. The net kinematic phase shift
due to the spin-rotation couphng is thus given by n(y„
—i+p/p„).

In a typical neutron interferometer, ' " the influence

L2

FIG. 2. Werner's proposal for a large-scale null interferom-
eter to search for the influence of neutron spin-rotation cou-
pling on the neutron phase. Thermal neutrons polarized along
the direction of rotation of the whole apparatus (interferometer
plus the detectors) are coherently split at L~ by Bragg re-
flection. The crystal slabs LI, L2, L3, and L4 are ideally paral-
lel to each other and the separation between LI and L2 is half
the separation between L2 and L3 and is equal to the L3-L4 dis-
tance. The beams I and II pass through the phase rotator (i.e.,
a slab of material that can be adjusted to shift the phase of one
beam relative to the other) in the middle of the interferometer
and are recombined in L4. The rf coils are employed to invert
the polarization of beam II after splitting and before recom-
bination. The interference of the two beams is reflected in neu-
tron counting rates at the detectors D. The phase shift due to
neutron spin-rotation coupling is given by Ql/v„where I is the
path leng". h along beam I or II in the interferometer. This
phase shift amounts to approximately 1 for polarized neutrons
of wavelength k=1.8 4 with a path length of 1 =10 cm in an

interferometer rotating at six rounds per second.
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ferometry in a rotating frame of reference presented in

this paper differs from the standard approach' —based
implicitly on the hypothesis of locality —by terms that
are linear in the wavelength of neutron radiation [cf. Eq.
(16)]. It has been argued that this extension of the hy-
pothesis of locality to wave phenomena provides only a
first-order correction beyond the eikonal limit. To illus-
trate this proposition in the present context, imagine a
neutron at rest in the inertial frame. According to the
accelerated observer, the neutron has energy eigenvalues

E'~ =y(mczT -,
' hn),

where E+ (E'-) represents the energy of the neutron
with spin polarized parallel (antiparallel) to the direction
of the rotation of the observer. Thus the rotation of the
observer splits the ground state of a free neutron such
that the level splitting relative to the average (i.e., un-

split) energy is given by the ratio of the Compton wave-

length of the neutron to the acceleration length c/Q.
The simple connection between the rest mass of a parti-
cle and its energy as measured by an ideal inertial ob-
server must therefore be generalized to include the spin
of the particle as well since actual observers in general
rotate. For observers on the Earth (c/0@=28 a.u. ), the
splitting is negligibly small (-10 ). The same con-
clusion holds even for observers on a rapidly rotating
neutron star. Nevertheless, either for a hypothetical
spinning particle of very small mass (cf. Ref. 2) or for an
observer with extremely high angular frequency this ra-

tio may, in principle, become larger than unity such that
E+ becomes negative. A basic theoretical resolution of
this difficulty is not available at present.

I am grateful to Samuel A. Werner for many interest-
ing discussions.
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