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New Monte Carlo Technique for Studying Phase Transitions
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We present a new method for using the data from Monte Carlo simulations that can increase the
efficiency by 2 or more orders of magnitude. A single Monte Carlo simulation is sufficient to obtain
complete thermodynamic information over the entire scaling region near a phase transition. The accura-
cy of the method is demonstrated by comparison with exact results for the d 2 Ising model. New re-
sults for the d 2, eight-state Potts model are also presented. The method is generally applicable to sta-
tistical models and lattice gauge theories.

PACS numbers: 05.50.+q, 64.60.Fr, 75.10.Hk

Monte Carlo (MC) simulations have been used for
many years to study the properties of physical models.
A major concern for any thorough and accurate MC
study is the amount of computer resources required. For
large scale computations, such as those necessary to
study lattice gauge theories, ' the power and efficiency of
the simulation are of major importance.

The desire to study larger and more complicated sys-
tems has been the impetus behind many advances in

computation algorithms and computer hardware, aimed
at increasing the speed at which a simulation is per-
formed. Such advances have made it possible to study
systems which would have been impossible to examine
only a few years ago.

A different, but complementary approach to improving
efficiency is to increase the amount of information ob-
tained from a simulation. The data usually obtained
from a MC simulation are averages of thermodynamic
quantities at the single point in parameter space for
which the simulation was performed. Early efforts to re-
move this limitation and obtain information over a range
of parameters have had varying degrees of success.
Recently, Bhanot and co-workers have made progress
in this direction in calculations of the partition function
of Z(2), Z(8), and SU(2) lattice gauge theories. Their
technique uses multiple restricted-energy MC simula-
tions to generate the partition function for a range of pa-
rameter values.

In this Letter, we present a related approach that is
easier to implement, which uses standard simulation
methods to generate continuous thermodynamic func-
tions across the important region of parameter space.
The data from a single simulation can be used, for in-

stance, to study the entire scaling region near a phase
transition, while with normal techniques, such a scan
would require many simulations, producing a collection
of individual points. Even three- or four-parameter
scans, impossible to obtain with current simulation tech-
niques, can be performed with this approach.

The method is especially important when the behavior
of the system displays sharp peaks, such as near those
near first- and second-order phase transitions, which are
crucial for understanding the critical behavior of the
model. Standard MC techniques locate the position of a
narrow peak by multiple high-accuracy simulations. The
result is a set of discrete points, none of which is exactly
at the maximum. With the new technique, data from a
single simulation can accurately locate the peak position
and determine its height.

We demonstrate the reliability of this method by com-
parison with exact results for the d=2 Ising model. We
demonstrate its power by performing the first calculation
of exponentially small corrections to scaling at the first-
order transition of an eight-state Potts model.

To illustrate the method, we consider a MC simulation
of some physical model. Each configuration is generated
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with its proper thermal weight. Time averages then give

the equilibrium averages of any quantities of interest.
These averages are the usual output of MC simulations.
However, because the form of the probability distribu-

tion is known, it is possible to extract even more informa-

tion from the simulation.
To see this, consider the Ising model in a magnetic

field. The Hamiltonian for this system is

—P/f =K g cr;o~+hg a; =KS+hM,
(i j) i

where K is the dimensionless coupling constant (J/kT)
and h is an applied magnetic field (H//kT). The proba-

bility distribution of S and M at a point in the parameter
space (K,h ) is given by

Ptx, si(S,M) N(S, M)exp(KS+hM), (1)1

Z K,h

where N(S, M) is the number of configurations at the
point (S,M) in the phase space, and Z(K, h) is the

canonical partition function given by

Z(K, h) g N(S, M)exp(KS+hM) .
S,M

The histogram of values of (S,M) generated by the
MC simulation is proportional to Ptx s&(S,M). By stor-

ing this histogram on the computer, it is easy for one to
generate the normalized probability distribution. The
histogram can then be used to generate data for different

parameters. The normalized probability distribution

with new parameters (K', h') can be expressed in terms

of the distribution with (K,h) in the following way:

P tx', s )(S.M)

Ptx pi(S, M)exp[(K' —K)S+ (h' —h)M]
(2)g P~. q&(S,M)exp[(K' —K)S+ (h' —h )M]

S,N

Since K' and h' are continuously variable, any quantities
of interest can be calculated as continuous functions of
the parameters. The denominator in Eq. (2) serves as an
estimate for the partition function.

This technique is easily generalized to other models,
including those with continuous symmetry or more pa-
rameters.

To test the method, we performed MC simulations of
the d=2 Ising model at the infinite-lattice transition
temperature and zero magnetic field for lattice sizes
L-4, 6, 8, 16, and 20. Between 4 and 6 million MC
sweeps were performed for each lattice size with use of
percolation representation algorithm due to Swendsen
and Wang. In Fig. 1, the calculated specific heat as a
function of temperature is compared to the exact results
for L 16. Using these data, we were able to determine
the position of the specific-heat maximum to within
0.04% and the value of the maximum to within 0.2%.
Within the scaling region, the agreement between the
MC results and the exact solution is excellent. For all
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FIG. 1. Plot of specific heat vs T for the 16X16 d 2 Ising
model. The dashed line is the exact solution (see Ref. 9) while

the solid line is the result calculated from the single simulation
at T T,. The location of the simulated temperature is

marked with a vertical line.

temperatures in the range T, ~ 20% the error is less than
0.5%.

The same MC data can also be used to study the Ising
model below T, in a magnetic field. In Fig. 2, the scaled
magnetic susceptibility is shown plotted versus the scaled
field for different sized lattices. The dashed line is the
scaling curve predicted by Binder and Landau, who have
studied finite size scaling at this first-order transition us-

ing standard MC techniques. ' They performed multi-
ple simulations for each lattice size using -6 times as
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FIG. 2. Plot of scaled susceptibility vs scaled field for the
d 2 Ising model at T 2.1. Results for L=4, 8, and 16 are
shown. The dashed line is a scaling curve from Binder and

Landau, Ref. 10. The data came from the same simulations as
those used for Fig. 1.
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FIG. 3. Plot of Binder's reduced cumulant VL, vs tempera-
ture for the d 2, eight-state Potts model for L 16, 24, 32,
and 40. The results are from single simulations at the finite
lattice transition temperature. The infinite lattice limit for Vl.

(see Ref. 13) is also shown.

FIG. 4. Plot of the specific heat maximum vs L for the
d 2 eight-state Potts model for L 4, 6, 8, 16, 24, 32, 40, and
56. The data came from the same simulations as those used
for Fig. 3. The solid line is the asymptotic scaling result.

much computer time as this study. The deviation from
the scaling curve, also predicted by Binder and Landau,
can clearly be seen. It should be emphasized that we ob-
tained this field dependence from simulations in zero
magnetic field and at a different temperature.

When we tested the method on the temperature-driven
first-order phase transition in the d 2, eight-state Potts
model, " the results were even better than expected. In
practice, it can be extremely difficult to determine the or-
der of a phase transition. The finite size of systems
makes it impossible to see the discontinuities which
characterize first-order transitions. Recently, Binder'
has introduced a quantity that is very sensitive to the na-
ture of a phase transition, but which requires a precise
determination of the position and height of extremely
narrow peaks. (For the first-order transition in the d 2,
eight-state Potts model, the full-width of the peak for a
642 lattice is less than 0.2% of the transition tempera-
ture. In d 3, it is even narrower. ) For the energy, this

quantity, the reduced cumulant VL, is defined by

&E')
VL =1-

3&E')'

At second-order transitions, VL
—', for all tempera-

tures as L~ ee. For the first-order transition in d=2
Potts models, VL takes on the value 3 for high and low

temperatures, tending toward a known nontrivial value
at the transition temperature. ' For the eight-state Potts
model, this value is 0.626279 14. . . .

We studied lattice sizes up to L =56 with simulations
of up to 8X10 lattice sweeps. In Fig. 3, VL calculated
from simulation at T, for each lattice size is shown plot-
ted versus temperature. The location of the infinite lat-
tice limit is also shown.

In Fig. 4, the specific heat maximum is shown plotted
versus L . (The maximum scales with the volume of the
system at a first-order transition. ) The deviation from
scaling can be clearly seen. For d 2 Potts models, the
asymptotic behavior of the specific-heat maximum is
known. ' By subtracting the known scaling behavior, we
were able to examine the corrections to scaling. We at-
tempted fits to several types of functions, including
power laws, but found that the data were best fitted with
an exponential approach to a constant value. In Fig. 5,
the corrections to scaling are shown along with the best
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FIG. 5. Plot of the corrections to scaling vs L for the d=2,
eight-state Potts model for L 4, 6, 8, 16, 24, 32, and 40. The
data came from the same simulations as those used for Fig. 3.
The solid line comes from a fit with Eq. (3) while the dashed
line indicates the location of Co.
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fit with

C,„(L)—aL =Co+ C~ exp( L—/I),

where I is related to the correlation length and a is relat-
ed to the latent heat X by

a = — =0.1065739. . . .
4k' T,

From the fit, we obtained the following values for the
parameters:

Co 27.7(4),

C, =29.3(3),

I =17.7(S) .

efficiency (by 2 orders of magnitude or better) makes the
method especially useful in the study of lattice gauge
models, where large amounts of computer time are used.
Because the partition function is also calculated (nor-
malization of the probability distribution) the scanning
technique can also be used for certain free-energy calcu-
lations. Thermodynamic functions can also be calculat-
ed at complex values of the temperature and fields mak-
ing it possible to study the zeroes of the partition func-
tion in the neighborhood of the transition.

We would like to thank K. Bassler, J. S. Wang,
H. Park, and R. B. Griffiths for helpful discussions. This
work was supported by National Science Foundation
Grant No. DMR-8613218.

The value of Co should be 2 the sum of the specific
heat of the ordered and disordered phases. ' The values
of the two specific heats can also be obtained by mea-
surement of the second moments of the two peaks in the
energy distribution. Using our results for L =56, we es-
timate a value of Co of 26.5+ 1.5 in agreement with the
value obtained from the fit. A more detailed study of
these corrections to scaling will be presented elsewhere. '

We have shown that this new technique can be used to
greatly increase the amount of information extracted
from a MC simulation at little cost in time or effort.
(The results presented in this paper were obtained with

Micro VAXII and Sun 3/52 workstations. ) The ability
to vary one or more parameters continuously makes the
method useful in the study of systems with unknown or
partially known behavior. In addition, this scanning
ability simplifies and greatly improves the accuracy of
the determination of the location and height of peaks of
thermodynamic functions. This permits the study of
scaling behavior, as well as an accurate determination of
corrections to scaling. The technique is easily applied to
other kinds of ensembles such as constant temperature or
pressure molecular dynamics, microcanonical MC or
quantum MC simulations, as well as for Monte Carlo
renormalization-group calculations. The increase in
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