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Quasiparticle Statistics in Time-Reversal Invariant
States

Kalmeyer and Laughlin' (KL) have shown that a
frustrated spin- —,

' Heisenberg model (e.g. , the triangular
antiferromagnet) is equivalent to a Bose lattice gas with

short-range repulsive interactions in an external magnet-
ic field. KL suggest that the frustrated spin system and
the continuum Bose plasma may be related by adiabatic
continuation. This would imply that the ground state of
the spin system is closely related to the lattice version of
the Laughlin wave function, which describes the frac-
tional quantum Hall eA'ect. They note that the proper-
ties of this state are very similar to those of the short-
ranged resonating-valence-bond (RVB) state originally
proposed by Anderson and further characterized by
Kivelson, Rokhsar, and Sethna (KRS). In particular,
KL identify the fractionally charged quasiparticles of the
plasma with spin- 2 quasiparticles of the spin system, the
"spinons" of RVB theory. Their assignment of frac-
tional statistics to the quasiparticles, however, contra-
dicts KRS's conclusion that spinons are fermions.

Despite their similarities, the spin and plasma prob-
lems are fundamentally diA'erent; the spin system is
time-reversal invariant while the plasma in a magnetic
field is not. As long as time-reversal invariance is not
spontaneously broken, the eigenstates of the spin model
can always be chosen to be real, while the eigenstates of
the plasma are intrinsically complex. KL report that the
Laughlin wave function seems to be nearly real when

evaluated on a many-site lattice, a remarkable discovery
which supports their claim that it is a good approximate
ground state. The reality of the exact eigenstates, how-

ever, has important consequences for the quasiparticle
statistics. We prove below that in a time-reversal-in-
variant system the Berry phase must be an integer mul-

tiple of x, and we argue that if the excitations of such a
system have a quasiparticle interpretation, they are natu-
rally described by either Bose or Fermi statistics.

Consider a many-body system whose Hamiltonian de-
pends on a set of parameters fg;I. For any closed loop I
in parameter space on which the ground state of the sys-
tem is nondegenerate, Berry's phase can be computed
by f ~&*(d0&/dX)dX, where k parametrizes the loop
(running from 0 to 1) and Oi is any ground-state wave
function that is continuous on I . If the system is time-
reversal invariant, then +~ can be written as the product
of a complex phase factor e' and a normalized, purely
real wave function @~ that are continuous functions of k
from 0 to l. (They may, however, be discontinuous on 1

between X =1 and k =0+.) Berry's phase is then sim-

ply g(1) —g(0). This diff'erence can only be 0 or z, since
e~ =@0 (by continuity) and the real wave functions +&
and @o can difl'er by at most a sign (they are real ground
states of the same Hamiltonian). Thus in a nondegen-
erate, time-reversal invariant system, Berry's phase is al-
ways an integer multiple of z.

To relate Berry's phase to quasiparticle statistics, im-

agine that each g; specifies the position of a potential
which localizes a single quasiparticle. If a quasiparticle
interpretation is valid, Berry's phase for any closed cir-
cuit is the sum of three terms: (a) a statistical phase
for each exchange (e.g. , 0 for bosons and rr for fer-
mions), (b) a phase due to gauge forces between quasi-
particles, and (c) Aharonov-Bohm phases accompanying
motion in an external gauge field. In two dimensions, '

phases (a) and (b) are both proportional to the number
of particle exchanges (a topological invariant). The
statistics of two-dimensional particles are therefore not
fundamental, since the statistical phase can be continu-
ously varied at the expense of introducing flux tubes
bound to the particles. The "natural" statistics are those
that eliminate the gauge forces between particles, i.e., set
phase (b) equal to zero. The previous paragraph then
establishes that in a time-reversal-invariant system, Bose
and Fermi statistics are the only natural statistics. It fol-
lows that "anyon" quasiparticles as predicted by Kal-
meyer and Laughlin can appear only if the two-quasi-
particle ground state breaks time-reversal invariance.
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