
VOLUME 61, NUMBER 3 PHYSICAL REVIEW LETTERS

Wormholes and Goldstone Bosons

18 JULY 1988

Kimyeong Lee
Theoretical Physics Group, Fermi IVational Accelerator L,aboratory, Batavia, Illinois 60510

(Received 12 May 1988)

The quantum theory of a complex scalar field coupled to gravity is considered. A formalism for the
semiclassical approach in Euclidean time is developed and used to study wormhole physics. The con-
served global charge plays an essential role. Wormhole physics turns on only after the symmetry is spon-
taneously broken. An eA'ective self-interaction for Goldstone bosons due to wormholes is shown to be a
cosine potential, whose vacuum energy will be reduced by the cosmic expansion. Some implications and
questions are discussed.

PACS numbers: 04.60.+n

The physics of geometrical fluctuations in quantum
gravity has been studied' to implement the idea that
small-scale fluctuations lead to an apparent loss of quan-
tum coherence on a large scale. However, it has been
shown'6 that there is no loss of quantum coherence due
to geometrical fluctuations such as wormholes. Cole-
man has proposed a solution to the cosmological-
constant problem by employing wormhole physics.

Giddings and Strominger' have found a wormhole
solution as an instanton configuration of Euclidean quan-
tum gravity coupled to a massless axion, which arises
from the antisymmetric rank-three tensor in the super-
string theories. Also, they wrote down an effective Ham-
iltonian for the interaction between wormholes and the
Kp-EC p system.

In this Letter, a general formalism for tunneling or in-

stanton physics in Euclidean time is discussed in theory
of a complex scalar field. This will show that wormholes
exist in a more general frame. By use of this, the proper-
ties of wormhole solution are studied. The wormhole
solution exists only when the symmetry is spontaneously
broken. An effective interaction on Goldstone bosons by
wormhole physics is obtained and is shown to exhibit the
cosine potential exactly as in the case of the ordinary ax-
ion interacting with QCD instantons. s With a non-

Abelian symmetry, the effective potential is not well

defined. Finally, some discussion will follow.
Consider a quantum-mechanical system of a particle

of unit mass which is moving on a plane with a potential
V(r) and angular momentum Q-r2B. The energy is

E =r' /2+ V,fr(r), where V,f(r) =Q /2r + V(r). Sup-
pose that the particle is at a metastable local minimum
of V,fr. The standard semiclassical approach leads to
tunneling rate proportional to exp[ —2fdr(2V, f)'i ],
where the rangle of integration is from the metastable
point to the escape point.

Now the bounce solution, which gives the maximum
rate, can be obtained by solution of the Euclidean equa-
tion, r' —Q /r +V'(r) —0, of the Euclidean action
S,tr =r' /2+ V,rr(r). The exponential factor becomes the
exponent of minus the bounce action.

8 SE+ drk(r)dQ/dr =0,

with a Lagrangean multiplier, X.
Now I can generalize this formalism easily into quan-

tum field theory of a complex scalar field p=fexp(i8)/—
K2. The Euclidean action is

SE =„drd'x[2f + ,' f'8 + V-(f)]. - (2)

The total charge Q=fd xf 8 is conserved. As the
charge is conserved, the variational principle (1) pro-
duces the right bounce equation. But the bounce equa-
tion becomes messy because the solution for the
Lagrangean multiplier is not local in space.

To overcome this, consider possible tunneling paths,
say p(x, r), which satisfy the initial condition and the
charge conservation. However, they do not need to satis-
fy the local current conservation, B„j"=0, wherej„=f 8„8.One can divide these possible paths into sets,
each of which is characterized by a source v(x) of the
current, 8J"=x(x). We have fd3xv(x, r) =0 for the
overall charge conservation.

Let us first find the bounce solution inside a set of pos-
sible tunneling paths characterized by a given source

Let us reintroduce the real angle variable 8 and so an-

gular momentum becomes g
=r 8. Euclidean action be-

comes S =fdic(r' /2+r 8 /2+V(r)]. The variational
principle, BS =0, will yield

—r +r8 + V''(r) = —'r'+
Q /r + V'(r) =0

for r. One can see easily that this is a wrong equation.
What went wrong? Because angular momentum is

conserved by the superselection rule, the tunneling pro-
cess should satisfy angular momentum conservation.
The conservation of angular momentum should be a con-
straint in the variation of the Euclidean action. (The
way to justify these statements in the path-integral
method is not known to the author. ) The correct varia-
tional principle is
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Ic(x). The variational principle is then

BJ— f(—a„e)'+ v' =O,

B„(f'B„e)=x(x).

(4)

Note the minus sign of the second term in Eq. (4).
The bounce solution satisfies charge conservation and

is a stationary point of the Euclidean action if the varia-
tions are constrained to satisfy charge conservation.
What the variational principle Eq. (3) means is that by
taking a variation in the set of a given source, we have

frozen the variation along the source direction and found
the stationary solution. Let us call the stationary solu-

tion p, (x) for each ~.
Now compare the actions of the stationary solutions

for diff'erent x's, say x and a+ e, where e is infinitesimal.

p„+,can be written as the sum of p, and a variation 6p„.
In terms of f and 0, the bounce solutions at x (x+ e) are

f, e (f+Bf,0+60). By taking variation of Eqs. (4) and

6 Sp+ d4xz(x)(a~" —K) =O.

The equations imply that X =0+const. After substitu-
tion of this, the equations for f and 0 become

2B„(fbfB„e)+B„(f'B„be)=e(x). (7)

By using Eqs. (6) and (7) and partial integrations one
can obtain the diff'erence between the actions,

~S.'=S'(q' ) -S'(q') = — d'x ~(x)0(x). (8)

One can expect that there is a solution of the equation,

B„(fB„he)=e, where 50 is order of e. The reason is

that when the charge density is not zero, f is not zero.
One can thus take perturbation of Eq. (5) in 0 and x.
Then Eq. (8) becomes

sS„'= — d'x ~~0,

which is nonzero in the first order of e except when ~=0.
For K =0, the first variation of the action vanishes. The
bounce solution satisfies Eqs. (4) and (5) with x =0 and

the bounce action gives the exponential suppression fac-
tor in the tunneling rate.

Let us couple gravity to a complex scalar field. The
Euclidean action is

(5), we obtain equations for 6f and 80,

—B'6'f 6—f(Be) ' —2f(Be)(Bse) + v "sf=0, (6)

S = d xJg [ (M /1—6 )R+ ,' g"'BJ'B„f—+,' f2g"'B„ea,e—+V(F)l. (io)

There is a boundary term, which is not relevant here. There is also a term for the Euler number of the manifold, which

will be neglected as it is not essential in the following discussion.
The previous argument for the variational principal goes through here too. The Euclidean solution would satisfy the

charge conservation, B„(j"=Jgg""f~a„—e) =0. The variational principle in Eq. (3) with x =0 will lead to the rest of the
field equations,

g '"B„(Jg-af) fa„ea-e+v(f) =o,

R„,——,
' g„„R= (8'/Mp )T„„,

where

T„,=BJa„f f'a„ea„e—g-„,[ —,
' a.fa.f ,' f 2 a.e a 0+—v—(F)].

(i2)

0(p) = /2''f (p) 'R(p) ', (i3)

so that Js3(j =R f 0) =n, where the integration is

(The famous minus sign of the Euclidean energy-
!momentum tensor for the phase has been obtained in-

dependently by Giddings and Strominger' for the axion
field arising from the rank-three antisymmetric tensor of
the superstring theories. )

Suppose that the potential has an absolute minimum
at f=v with value VO=V(v). One can choose freely
v«M~. Even though the symmetry is spontaneously
broken, the total charge is still conserved. There is a
massless Goldstone boson represented by the field
a(x) =ve. Assume that the solution is O(4) symmetric.
The metric is ds =dp +R(p) do3, where d03 is the
line element of a unit three-sphere. The current-
conservation equation has a solution

over any three-sphere around the origin. The global

charge n becomes an integer after quantization. Equa-
tions (11) and (12) become

R =1—

2

f f — —+—V'(f) =0, (i4)
4 4f 3R6

/1
+Vp R. (is)

3M 8 fR
If we freeze f(p) to be v, we can solve Eq. (15) exact-

ly. The general case will be discussed later. There are

two parameters in the solution; the radius r of the

wormhole in the ffat-space background such that

r =n/(3 )'nzvM~ and the Hubble constant 0 of the

De Sitter space-time such that H =8xvo/3M~. The
solution exists only if JzvMp/4n & Vo, i.e., the size of
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the wormhole is smaller than the horizon length. The solution is

Hp= P 11
[a(p y)] '

h(x) =arcsin a(x —p)
x(a —p)

R a —
p

p
2

' 1/2

y(p —a)
a(p- y)

(i6)

where 11 is the elliptic integral of the third kind and a & p&0& y are roots of x —x'/(rH)'+ I/(~H)'=0 T»»s a
wormhole solution which connects two opposite points of Euclidean De Sitter space-time. The action of the wormhole
solution is

4
r

3M' rH z z
gVO [a(a —y)]'"

where p=[(a —p)/(a —y)]'~ and E (F) is the elliptic
integral of the second (first) kind.

As Vo J~vM~/4n, the bounce solution collapses
into a three-sphere with zero action. When Vo 0,
Sb —S,. =(3n) ' Mz/2v. (The solution in the case V0=0
has been given in Ref. 3.) If the symmetry-breaking
scale v is much lower than M~, the action is then much
larger than 6 and the radius of the wormhole becomes
larger than the Planck scale, and so the semiclassical ap-
proximation is good. The vacuum solution and action
are a=0, R(p) =H 'sin(Hp), and S„,= —3M&/8VO.
The contribution of wormholes is then Eexp[ —(Sb
—S,, )], where K is of order of the size of the wormhole.

The interpretation of the wormhole solution depends
on whether or not there is a negative mode around the
solution. If there is a negative mode, the solution is

called a bounce and describes the nucleation and growth
of wormholes in the Minkowski time. If there is no neg-
ative mode, the solution is called an instanton and de-
scribes the tunneling and mixing of two states of the
same energy. (See Ref. 8 for more explanation. ) There
is a simple but not complete argument that the wormhole
solution is not a bounce but an instanton solution in Eu-
clidean time. Consider the asymptotically flat case. As
r goes from —~ to +~, the charge of our Universe
changes by AQ =n as the sign of the current changes, or
that of dp/dr. This will sink into the wormhole, appear-
ing in another side. However, the bounce solution should
bounce back to the initial configuration and there should
be no charge difference.

What happens if we make f(x) dynamical rather than
take f(x) to be V? A detailed study of Eqs. (14) and

(15) shows that at the neck of the wormhole f will have
a value smaller than v, but nonzero, and the size of the
neck and the action get bigger. As one can see easily,
the size and action go to infinity as the symmetry is re-
stored.

What is the effect of the formation of wormholes in

Euclidean time on our Universe? That is captured in

Refs. 5 and 6 as an effective Hamiltonian after summa-
tion over all possible combinations of formation of
wormholes in the dilute-gas approximation. When one

—3II —, ,p
n a —p

a

which is invariant under global U(1) rotation, a/v
a/v+e, C e "C, and C" e "Ct.

After many measurements, one expects that our
Universe will settle into one of the eigenstates of C and

C . The explicit form of the eigenstate is

~
a) =z '~ exp[aa* —(a —a+)(a* —a —) ~0),

where C~ a) =a
( a), C

~
a) =a*

~
a). Let us put a

=ce ' '. The effective Hamiltonian density on this
eigenstate becomes

S,fr =crt e cos(a/v —80). (i9)

This is the same form as the axion potential due to the
QCD instanton effects. ' The Goldstone boson becomes
massive through the quantum-gravity effects and the to-
tal charge in our Universe is not conserved. The mass of
the Goldstone boson, M, =(c/v )Ee ~, is now depen-
dent on a parameter c of the wave function of our
Universe.

Let me try to include wormholes carrying charge + n

These are qualitatively diflerent from the sum of n

wormholes of charge ~ 1 because of topological
difference. Hence there is an effective potential for each
n similar to Eq. (19) with different K and S. One may
not expect any correlations between eigenvalues a„for
diff'erent n. If one sums over all n, the Hamiltonian be-
comes a sum over n of A„cos(na /v

—8„)with ampli-
tudes and phases independent of each other. In this case

restricts oneself to wormholes of charge ~ 1, with

creation (annihilation) operators a~+, a — (a~,a —), the
Hamiltonian density becomes S,tr =Re ~(C+ C t),
where C=a++a-, C =a++a-. Note that [C,C ]
=0. Additionally, C and C are independent of space-
time as wormholes do not carry any energy momentum.

As the total charge of universes is conserved, the
operator Q

—a+a++a —a — will commute with the
eff'ective Hamiltonian. This implies that the efl'ective in-

teraction is

S,f =Re (e" 'C+e " 'Ct)
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Goldstone boson dynamics becomes more involved.

Suppose that the scalar field is in a representation of a
non-Abe1ian group and that the symmetry is spontane-
ously broken. There are Goldstone bosons and corre-
sponding wormhole solutions. The effective creation and
annihilation operators of wormholes will have commuta-
tion relations as operators of the scalar field. Annihila-
tion operators commute with each other and so are
creation operators. There is then no problem to write a
coherent state for all annihilation operators. The charge
operators will, however, satisfy a non-Abelian algebra.
The eff'ective interaction between Goldstone bosons and
wormholes will be similar to that of the Abelian case.

In this Letter, the wormhole dynamics arising from
quantum mechanics of a complex scalar field coupled to
gravity has been studied. The wormhole physics will

turn on after spontaneous symmetry breaking. The in-

duced efl'ective interaction of Goldstone bosons has a
cosine potential, whose parameters depend on the state
of our universe. The possible vacuum energy will be
red-shifted into nonrelativistic massive Goldstone bosons
as the Universe expands.

Suppose that the symmetry breaking occurs later than
inflation. Will the wormhole effect turn on immediately?
Otherwise, did it happen in the past, or will it in the fu-

ture? A cosine potential looks bad for the cosmological-

constant problem. Will multicharged wormhole efl'ects

rescue the situation?
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