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Chaos in Random Neural Networks
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A continuous-time dynamic model of a network of N nonlinear elements interacting via random asym-
metric couplings is studied. A self-consistent mean-field theory, exact in the N ~ limit, predicts a
transition from a stationary phase to a chaotic phase occurring at a critical value of the gain parameter.
The autocorrelations of the chaotic flow as well as the maximal Lyapunov exponent are calculated.
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Theoretical investigations of the onset and the nature
of chaotic flows in deterministic dynamical systems have

focused, in recent years, mainly on systems with few de-

grees of freedom. ' Quite often chaos is achieved in these

systems by the variation of a parameter through a se-

quence of bifurcation points, which represent increasing

complexity of the motion. It is still an open question
whether these scenarios are realized in large systems
which cannot be described by a small number of collec-
tive modes. In this Letter we study the nature of chaotic
flows in a deterministic nonlinear system —a neural

network —consisting of many localized degrees of free-
dom. We show that in the limit of infinite number of de-

grees of freedom, there is a sharp transition (as a func-

tion of the parameter of nonlinearity) from a stationary
state to a chaotic flow. This transition as well as the sta-

tistical properties of the chaotic flow is described by
time-dependent self-consistent mean-field theory. The
maximal Lyapunov exponent is derived from the fluctua-

tions about the mean-field solutions. In the context of
neurobiology, the study of chaos in neural networks may
be relevant to the understanding of the appearance of
spontaneous irregular patterns of activity in neural as-

semblies.
The model consists of N localized continuous variables

("neurons") fS;(t)I, i =1, . . . , N, where —
1 ~ S;( 1.

Associated with each neuron, a local field h;,
& h; & +~, is defined through the relationship S;(t)
=|Ii(h;(t)) where p(x) is a nonlinear gain function
which defines the input (h;) -output (S;) characteristics
of the neurons. In the biological context, h; may be re-

lated to the membrane potential of the nerve cell and S;
to its electrical activity (e.g. , its firing rate). The func-
tion y(x) is assumed to have a sigmoid shape
p(+ ~) = ~1, p( —x) = —p(x). For concreteness we

choose the function

y(x) =tanh(gx),

where the constant g )0 measures the degree of non-

linearity of the neural response. The dynamics of the
network is given by N coupled first-order difl'erential

equations ("circuit" equations) '
N jv

hi = —h;+ g Jt)SI = —h;+ g Jtl tlat(h, )
g=l g=l

Here J;J is the synaptic efficacy which couples the output
of the (presynaptic) jth neuron to the input of the (post-
synaptic) ith neuron, and J;; =0. In electrical terms Eqs.
(2) are II'irchhoff equations in which the left-hand side
represents the current leakage due to the membrane ca-
pacitance; the first term in the right-hand side represents
the current through the membrane resistance and the
last term denotes the input current flowing to the cell
due to the activity of the other cells. For simplicity the
microscopic time constant has been set equal to unity.
We consider here networks with random synaptic cou-
plings. Each of the JJ's is an independent random vari-
able which can be assumed for convenience to have a
Gaussian distribution. The mean of J;J is zero whereas
the variance is [J;ilJ=J /N. With this normalization
the intensive parameter in the case of (1) is the dimen-
sionless gain parameter gJ.

If the synaptic matrix J were symmetric then Eqs. (2)
would describe a relaxation of a global energy function,
which for random couplings is just a spin-glass Hamil-
tonian. Here we study synaptic matrices where J;i and

Ji; are uncorrelated in which case the dynamics in gen-
eral is nonrelaxational. In this case the long-time behav-
ior may depend on the particular realization of the J~'s.
However, in the limit N~ ~ a well defined typical
behavior exists, the properties of which are described
below.

The long-time properties of the solutions of Eqs. (2)
for large N have been studied by the method of the
dynamical mean-field theory (MFT) originally devel-
oped for spin-glasses. This theory is exact in the limit
of N ~. The essential result of this MFT is quite
simple. The dynamics of the system at long times can be
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reduced to a self-consistent equation of a single neuron,
which reads

h, (t) = —h, (t)+g;(t). (3)

(&, (t) &, (t+.)) =J'c(.),
where the average autocorrelation function

c(.) =[w 'g, -s, (t)s, (t+z)]J

is evaluated with use of Eqs. (1) and (3),

C(z) =(y(h;(t))y(h;(t+ z)))

(4)

The term q, is a time-dependent Gaussian field which is

generated by the random inputs from the other neurons,
i.e., the last term in Eqs. (2). Obviously, the mean of q,
is zero. Its second moment is determined self-consis-

tently from Eq. (2), yielding

and
f

h;(t) = Ji dt'e' 'tl;(t').

~(.) =(h, (t)h, (t+.)),
which by Eqs. (3) and (4) obeys 8 —6 =J C. Equations
(4) and (5) can be reduced to the following equation for

(5)

Square brackets with a subscript J denote average over
the distribution of J. The angular brackets denote
averaging with respect to the Gaussian distribution of g;.
Thus Eq. (4) represents a self-consistent equation for
the time-dependent autocorrelation C(t) N. ote that in

deriving Eq. (4) we have assumed that the system
reached a satisfactory steady state so that correlations
depend only on time separations and C(t) =C( —t). s

Instead of our solving the equation for C(t) it is more
convenient to study explicitly the local-field autocorrela-
tion

j = —av/a~,

V(W) = —
—,
' a'+ Dz4 —oo

p + oo

Dxe((~(0) —i~i)'t x+ [~i 't z)
2

(6)

(7)

where Dz =dz exp( —z /2)/(2n) 't and, in general,
@(x)=fpdyp(y). In the particular example of (1)
@(x)= (gJ) ' ln cosh(gJx). Equation (6) can be
viewed as a one-dimensional motion of h(t) under the
Newtonian potential V(h). There are important bound-

ary conditions for the solutions of Eq. (6): (i) h(t) is a
difl'erentiable even function, i.e., d( —t) =A(t), 5(0) =0.
This implies that the orbit must have zero initial kinetic
energy. (ii) h(t) is bounded by ih(t) i (6(0). Note
that the potential V is a self consistent po-tential. It de-

pends parametrically on A(0), the value of which has to
be consistent with Eq. (6). We now study the solutions
of Eqs. (6) and (7).

gJ & 1, zero ftxed point For a g.
—ain parameter less

than unity, V(A) is of the form shown in Fig. 1(a), in the
allowed regime i h(t) i

(h(0). The only bounded clas-
sical orbit with d(0) =0 is 6(t)=0. The vanishing of
the ("steady state") equal-time correlations implies that
the system (2) flows to the zero fixed point [h;—:0}, for
all (or almost all) initial conditions. The stability of the
zero fixed point below gJ=1 can be deduced by our
linearizing the equations of motion (2), noting that the
maximal real part of the eigenvalues of J is l.

gJ & 1, chaotic phase. —For gJ & 1 the form of V(A)
is not unique but depends on the assumed magnitude of
A(0). Furthermore, for a given V(h) there is a continu-
um of self-consistent solutions of Eq. (6). In general
there exists a value Ai(gJ) such that for d (0) in the re-
gime 0 &5(0) &Ai, V(A) has the form shown in Fig.
1(b). For such a potential the solutions of Eq. (6) are
periodic orbits, implying that the system converges to
limited cycles. If A(0) & hl the potential has the

double-well form of Fig. 1(c). In this case, the solution
with the lowest (Newtonian) energy [denoted by a in

Fig. 1(c)] has h(t) =A, where —A & 0 is independent of
time. This static solution corresponds to a nonzero fixed

point of the system (2), and would be analogous to a
spin-glass freezing which occurs in systems with random

symmetric J. Other solutions with negative energies
(denoted by b) correspond to limited cycles with nonzero
averages. Solutions with positive energies (denoted by c)
are oscillations around zero values.

Which of the many solutions correspond to stable at-
tractors? In fact, a study of the stability of the MFT to
fluctuations, which will be outlined below, shows that
none of the above solutions (for gJ & 1) are stable. The
only stable solution is the one with zero energy, denoted

by d in Fig. 1(c), for which h(t) decreases monotonical

ly to zero as t ~. The decay of the correlations be-

tween two points along the flow implies that the flow is

chaotic. For gJ=1+, the chaotic solution for h(t) is

h(t) =ecosh (et/J3), where e=gJ —1«1. Note that
as gJ 1+ the amplitude of the flow vanishes as
h(0) —e. At the same time the relaxation time of the
autocorrelation diverges as za:1/e. In general, this re-
laxation time is given by z '=[—8 V(0)/86 ]' as
can be deduced from Eq. (6). In the "Ising" limit, 'o

gJ ~, the relaxation time approaches the value r—(1 —2/n) 't'

Fluctuations and Lyapunov exponent In order.—to
study the stability of the flows to fluctuations we add to
Eq. (2) an infinitesimal external source, h;(t), and study
the linear perturbation of the flow, given by I;J(t,t')
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(a)

In the case of a stable point, k is negative. If the attrac-
tor is a stable limit cycle or quasiperiodic, k should be
zero. On the other hand, in the case of a chaotic attrac-
tor X is positive indicating the exponential growth of a
perturbation of the initial condition in random directions.

Calculating the fluctuations about the MFT we find
that x (r) can be written as

v(z)

Z'(r) = g Z„exp(2ro„r ),
n=o

r & 0, with ro„= —I + (1 E„)'i2—
, where E„are the ei-

genvalues of the one-dimensional Schrodinger equation,

( e'/ar -' a'V/a-~') y„(r) =E„y.(r),
and E„+~

)E„. From Eq. (9) it follows that

X = —1+ (1 —Eo) '

(10)

v(z)
ji

FIG. 1. Qualitative shape of the self-consistent classical po-
tential V(4) in the range ~5~ ~Zt(0). (a) The case of gJ & 1.
(b) gJ & 1 and 0 & 5 & h~. (c) gJ & 1 and 6 & A| (see text).
A solution starting at the point marked a is a static state. The
points b and c are examples of initial conditions leading to solu-
tions which oscillate around nonzero and zero values, respec-
tively. The orbit starting at d decays to zero. The dots mark
the energies of the various solutions.

=bh;(t)/bhf(t') It is more .convenient to study the
average quantity 1 (t) defined by

x- lim in(x'(r))/2r. (9)

which yields information regarding the maximal Lya-
punov exponent k. This exponent, which measures the
sensitivity of the flow to a perturbation of the initial con-
ditions in a random direction, is given by the asymptotic
time dependence Z (t), i.e.,

"

where Eo is the ground-state energy of Eq. (10). The
"fluctuation potential" W(t) = —tl V/86, is determined
by the classical solution, h(t), about which perturbations
are made. When 6 is constant, W(t) is also constant,
W(t)—:W, and the spectrum of E„ is the continuum
E)W yielding X = —1+ (1 —W) 'i . In the case of the
zero fixed point, W= 1

—g J; hence X =gJ —
1 indicat-

ing the instability of this fixed point when gJ & 1. The
static "spin-glass" fixed point also has a negative W, i.e.,
a positive X (for all gJ & 1), implying that it is not a
stable fixed point.

The analysis of Eq. (10) for a time-dependent h(t) is
more complicated. However, by differentiation of Eq.
(6) it is readily seen that y(t) =h(t) is an eigenstate of
Eq. (10) with E=O. This state represents a fluctuation
of the initial condition in the direction of the flow. In the
case of oscillatory A(t), the zero-energy eigenstate is
part of a band of eigenvalues extending to negatiue ener-
gies, leading again to a positive Lyapunov exponent. '

In the case of the chaotic solution, W(t) is a sym-
metric potential well with a single tninimum at t=0.
The zero-energy solution is a bound state with an odd
wave function, y(t) =h(t), which has a single node,
y(0) =0. Thus there is exactly one bound state, the
ground state, with negative energy yielding a positive X

as expected for a chaotic flow. We thus conclude that
the chaotic solution is the only stable solution of the
MFT for gJ & 1. ' Solving Eq. (10) for the chaotic
solution near gJ=1 one finds that 2-e /2, i.e., it van-
ishes continuously as e—=gJ —1 0. In the Ising limit,
gJ ~, X diverges as In(gJ), similar to the result for
products of random matrices. '

An important question is how many positive Lyapunov
exponents appear above gJ=I. The distribution of the
Lyapunov exponents cannot be evaluated from I (t).
However, the fact that the exponential divergence of
X (t) with time is observed in the theory even after the
limit N eo has been taken indicates that the number
of positive Lyapunov exponents for gJ & 1 is macroscop-
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ic, i.e., proportional to N.
To what extent do the above predictions correspond to

the typical behavior of a system with a finite, large value
of N? To check this point we have solved Eqs. (2) nu-
merically for systems with sizes up to N =1000. A de-
tailed account of the simulations will be given elsewhere.
The most important novel feature of the numerical re-
sults is the existence of an intermediate regime of gJ
separating the stationary and the chaotic phases. For
sizes N ~ 100, in almost all cases, a rapid decay to a
zero fixed point is observed for gJ&1, whereas for
gJ &2 the behavior is chaotic. However, as gJ is in-

creased above unity one first observes the appearance of
either nonzero stationary states, or more often, limited
cycles. These limited cycles become increasingly more
complex as gJ is increased until the motion becomes
chaotic. The limit cycles vary strongly from one realiza-
tion of J to another and are therefore probably not relat-
ed directly to the unstable periodic solutions of the MFT.
In fact, comparing the behavior of diH'erent system sizes
we find that the range of gJ where this intermediate be-
havior is observed shrinks as N increases. It therefore
seems that a system with a finite number of degrees of
freedom N undergoes a transition from a stationary state
to chaos through intermediate stages of limit cycles with
increasing complexity. However, the range of gJ where
these bifurcations occur shrinks to zero with N so that in
the limit N ~ a sharp transition to chaos emerges as
predicted by the MFT.

Several intriguing questions remain to be answered.
First, the above proposed picture for the behavior of
large finite systems has yet to be systematically tested.
In addition, further characterization of the strange at-
tractor, e.g. , evaluation of the whole distribution of
Lyapunov exponents, is needed. Finally, it will be very
interesting to study extensions of the present model to
networks with short range synapti-c matrices in finite
spatial dimensions. Detailed presentation of the calcula-
tions will be given elsewhere.
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