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The XYModel Has Long-Range Order for All Spins and All Dimensions Greater than One
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The quantum XY model of interacting spins on a hypercubic lattice has long-range order in the
ground state for all values of the spin and all dimensions greater than one. We also show that in the lim-
it of high dimension the spontaneous magnetization converges to the spontaneous magnetization of the
Neel state.

PACS numbers: 64.60.Cn, 05.30.—d, 75.10.Jm

We consider the question of the existence of long-

range order (LRO) in the ground state of the quantum
XY model on the hypercubic lattice in two and higher di-

mensions. (We note that there cannot be any long-range
order in two dimensions at positive temperature T, as the
Mermin-Wagner-Hohenberg theorem shows. ) The
Hamiltonian is

0-—g (S„'S'+S'S')
(x,y)

with (x,y) denoting nearest-neighbor pairs. Dyson, Lieb,
and Simon (DLS) ' showed the existence of LRO for
spin S —,

'
in 3D for positive temperature T. Neves and

Perez noticed that one could take the T 0 limit of the
DLS formalism and thereby prove LRO for the ground
state of the XXX Heisenberg model in two dimensions
for S~ 1. Kubo used the methods in Refs. 1 and 2 to
show the existence of LRO for S~ 1 in 3D and for
S~ —,

'
in 2D for the XYmodel in (1).

In a recent paper, we were able to improve on the
DLS method and applied this improvement to the XXX
Heisenberg antiferromagnet to show ground-state LRO
for S- —,

'
in 3D. Here we show that this method is also

capable of proving ground-state LRO for the XY model
(1) for S~ —,

' and all dimensions greater than one. The
case S- —,

' corresponds to bosons with hard-core repul-

sion (at half-filling) via the lattice-gas analogy of Matsu-
bara and Matsuda and proves that Bose-Einstein con-
densation (or off-diagonal long-range order) occurs in

this system despite hard-core repulsion in real space. In
fact, these S 2 systems provide the only examples
known to us of interacting particles in which Bose
Einstein condensation has been proved to occur

For a finite v-dimensional hypercubic lattice A the
ground state is unique. The object of principal interest
is the Fourier transform of the two-point function. That
is, for a 1, 2, or 3 we set

Sg ~A~
't g S„'exp(ip x),

xGA

and then set

gp -(SgS-p),

(2x) " d"pg~ =((S()) ') (2)

where the integral is over the cube
~ p; ~

~ n for
i 1, . . . , v. Note that in (2), and henceforth, gg
denotes the infinite-volume limit of g~ for finite volume.

Equation (2) will not be used here but instead we fol-
low Ref. 4 and introduce the additional sum rule which
is derived in the same way as (2) for i 1, . . . , v,

(2n) " d"p g~c osp;-( S(ISs)—=e~, (3)

where 8; is the nearest neighbor to 0 in the direction i.
Clearly (S(ISs,) is independent of i in the infinite-volume

limit. By symmetry e~ is minus half the ground-state en-

ergy per bond. (Note that we are treating the ferromag-
netic XY model, so that e~ )0. The antiferromagnetic
and ferromagnetic XY models are isomorphic. ') It
might be thought that (3) demands more information
(i.e., el) than does (2), but this is misleading because
our bound on g~ below also requires knowledge of e|.

The bound on g~ for p&0 is

V V

Osage S —,
' g (e|—escosp )jg (( —cosp;)

i 1 i I

(4)

~here e3=(SDSs, ). This bound is true for every finite A

and hence remains true in the limit A ~. It appears
several times in the literature and so we shall not at-
tempt to outline its lengthy derivation. It can be derived
as a T 0 limit of the bound in DLS ' as done (in the
XXX context) in Ref. 2. It can also be derived directly
in the ground state, as done in the XXX context in Ref.
4. As Kubo points out,

~ e3 (
~ e ~ (for otherwise the en-

ergy could be lowered by interchanging the 1 and 3 spin

with the angular brackets denoting ground-state expecta-
tion value. By Parseval's identity

'g, gg-((S('))'),

and by taking the usual infinite-volume limit and passing
from sums to integrals, we obtain
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directions), so that

V V

Osage'S —,
' (ei)'S e+ gcosp; /$(( —

cosp )
i 1 i 1

The sum rule (3) says

(5)

Let m -limi„i (SOS„') be the square of the spon-
taneous magnetization in the 1 direction. Our goal,
LRO, is equivalent to m &0. Since the right-hand side of
(5) is integrable, me0 if and only if g~ (in the infinite-
volume limit) has a delta function at p=0. In fact,
(2z) "m is the coefficient of this delta function. The
bounds (5) and the sum rule (6) imply

V

el (2x) "
I d"pg~&v ' g cosp;.

aJ i 1

(6) el ~
2 (el)' 'I(v)+m',

where

(7)

V V

I(v) (2a) "„d"p g (1+cosp;) g (1 —cosp;)
i 1 i 1

o

and [aj+ max[a, 0}. Numerically we find 1(2) 0.65
and I(3) 0.35. A simple variational argument (using
the wave function with all spins aligned in the 1 direc-
tion) shows e(~ —,

' S2 in all dimensions. Thus for any

spin S& —,
' and v 2 or v 3 we conclude from (7) that

me0, thereby implying there must be LRO in the XY
model.

To prove LRO for v& 3 we must bound 1(v). We
shall now prove that 1(v) ~ I(2) for v~ 3, and thereby
establish [from (7)] LRO for all v& 3. The proof is as
follows. Let F(x) x[(1+x)/(1 —x)]'i for 0~ x ~ I.
One checks that F is monotone increasing and convex.
For i,j 1, . . . , v let YJ(p) —,

' (cosp;+cospi) and let

Y(p) v 'g;"-
& cosp;. The integral in (8) is

F([Y(p)j+). Now

Y(p) -(v' —v) 'g Y;, (p) .
i&J

Since [a+bj+ ~ [ajy+[bj+, we have

[Y(p)j+ (v' —v) 'g [Y;,(p) j+ .i'
Since F is monotone,

F([Y(p)j+)~ F (v —v) 'g [Y(p)j+

Since F is convex,

F([Y(p)}i)~ (v' —v) 'QF([Yi, (p)j+) .

But

(2x) " F([Yi(p)j+)d"p =I(2) .

This proves 1(v) ~ I(2). By the same analysis one can
also prove that I(v) ~ I(p) whenever v & (u.

Having achieved our goal of proving LRO, we now

turn to an additional fact about the spontaneous magne-
tization in the limit of high dimension. We shall show
that m converges to the classical value S /2 as v~ g)g).

First, we prove that I(v)~ 0 as v (x). Using
[Y(p)j+ ~

i Y(p) i
~ I and the Schwarz inequality, we

~ v 'g cosp; (8)

have

~ (2x) '„d 'p [1 ——' (cosp 1+cosp2+ cosp3) ]

which is finite. This proves our assertion.
The importance of the assertion that lim„ I(v) =0

is that inequality (7) and the inequality m 2 ~ e& (which
follows from reflection positivity; see Ref. 4) then imply
that as v ~ the spontaneous magnetization ap-
proaches the energy el. As we will show below the ener-

gy el converges to & S as v~ oo. Thus as v ~ the
spontaneous magnetization converges to the classical
value. The same proof and conclusion applies to the
Heisenberg antiferromagnet considered in Ref. 4. This
result validates the folklore that as v ~ the ground-
state correlations converge to the classical values.

To show that lim„el —,
' S, we first note (as

above) that el ~ 2 S . To obtain an upper bound to el
we write the Hamiltonian (1) as the average of
Z&gy) ( SzSy SzSy +SzSy ) and P&gy) ( Sg Sy—S„S„—S„3S»). The first Hamiltonian is unitarily
equivalent to the antiferromagnetic Heisenberg Hamil-
tonian, and so Anderson's bound' says that its ground-
state energy per bond is ~ —(S +S/2v). The second
Hamiltonian is the Heisenberg ferromagnet, and so its
ground-state energy per bond is —S . Thus the
ground-state energy per bond of Hamiltonian (1) is not
less than —(S +S/4v), and so e(~ —,

' S +S/8v. By
combining the two bounds it follows that
limv e1 2S .

One can also consider admixing some 3-component,
i.e., the two-site interaction is changed to S' Sj'

+~S Sl . Then our method will show I RO f
small 5 in all the above cases. It does not show LRO for

I(v) ~ 2(2x) "„d"p[1 —Y(p)] 'J d"p Y(p) 2.

The last integral is (2z) "/2v (since fcosp;cosp, 0).
To bound the first integral we note that 1/(1 —x) is con-
vex and so, imitating the above analysis for v ~ 3,

(2z) "„d"p [1 —Y(p) ]
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h, =1 with v =2, but it does for v =3, as shown in Ref. 4.
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