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Nematic-Smectic-A -Smectic-C Transitions in Systems of Parallel Hard Molecules
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The phase diagram for liquid-crystal models of hard molecules is studied by use of a nonlocal density
functional for the free energy. Nematic, smectic-A, and smectic-C phases can be obtained from purely
packing effects without any attractive interaction. A system of parallel hard spherocylinders shows a
continuous phase transition from the nematic to a smectic-A phase, in good agreement with existing
computer simulations. In a system of parallel oblique cylinders we predict first- or second-order phase
transitions between the smectic-A and the smectic-C phases.
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The orientational order of the molecules in a nematic
liquid crystal may be predicted from the anisotropy of
the hard cores or from the soft attractive forces. The
first route, pioneered by Onsager, ' leads to well dev-

eloped theories2 in good agreement with computer
simulations for systems of hard bodies (HB). The
second route follows the work of Maier and Saupe, us-

ing a mean-field treatment for the attractions, and may
give good qualitative agreement with experimental data.
However, it is now clear that the accurate description of
real nematics has to include the joint effects of hard
cores and attractions, as is well established in the case of
simple fluids, for which the correlation structure is main-

ly determined by the hard cores.
In a smectic liquid crystal, the molecules are oriented

along a preferential axis and distributed in layers, which

may be perpendicular (smectic A) or not (smectic C) to
the orientational director. In most theoretical studies of
these phases, following the work of McMillan, the
smectic order is given by the attractive interactions.
This is somehow surprising if the smectic phase is re-
garded as a preliminary to the full crystallization, which
results mainly from hard-core packing. Some insight is

given by models of fully oriented molecules, as in a per-
fect nematic, so that the smectic may be studied without
the troubles of partial orientational order. The simplest
case to consider is a system of hard ellipsoids with paral-
lel principal axes for all the molecules. This model

maps, by appropriate scaling, into a hard-sphere (HS)
system which cannot show any kind of smectic phase.
It was conjectured, from this result, that no smectic or-
der could appear in purely HB systems, ' but the com-
puter simulations of Stroobants, Lekkerkerker, and Fren-
kel, " for parallel hard spherocylinders (PHSC) proved
this to be wrong: The PHSC have a second-order
nematic-smectic-A transition, well before the crystalli-
zation of the system. This made clear the interest in un-

derstanding the full role of the hard cores in real liquid
crystals.

There are already some theoretical studies of smec-

tic-2 order in HB. ' ' Here we present a theory which
can be used to analyze the full phase diagram of these
systems, including nematic, smectic-A, and smectic-C
phases. We start with the model of a hard-rod nematic
described by Lee, who takes advantage of the quasiex-
act Carnahan-Starling equation of state for HS, to get
the thermodynamics of other HB systems, with uniform
density but arbitrary angular distribution, p(m), m being
the set of angles describing the molecular orientation.
The integral of p(m) gives the total density po. The free
energy per molecule (in kBT 1 units) has the ideal-gas
term

+j(fop(m)] 1mp(m) jln[A'p(m)] —I],
independent of the molecular shape (A is the usual
thermal wavelength which contains the kinetic energy
contributions), and the interaction part which is approxi-
mated by

~+HBip(m)] ~+Hs(PO)B2 (P(m)]~B2

where heHB(po) corresponds to a HS system with the
same packing fraction g povo (vo being the molecular
volume) as the real HB system, and B2 and B2" are
the second virial coefficients, which are half the excluded
volume around a molecule, B2" 2zcr /3 (o being the
HS diameter) and

B2" Ip(m)] - 2 J dmdm'p(m)p(m')V, "„,(m, m'),

with the excluded volume for fixed orientations,
V,„,(m, m'), averaged over molecular orientations.
d%'HB may be interpreted as the entropy lost to create
the hole to add a new molecule in the system. The
minimum hole volume is 82, which depends on the
molecular shape and orientational distribution. In (1)
the entropy lost per unit volume is approximated by that
of HS with the same packing fraction. This gives the ex-
act second virial coe%cient and shows good agreement
with computer simulations for both isotropic and nemat-
ic phases of hard spherocylinders. '
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To construct a theory of smectic phases, with nonuni-

form density distributions, we first realize that an ap-
proximation in terms of HS should be much poorer for
the correlation structure than for the thermodynamics,
especially in systems with orientational order, because
the average contact distance is different along different
directions. To include this effect we use the exact map-
ping from HS to the parallel hard ellipsoids (PHE) and
use the latter as the reference system for the real HB. In
systems with uniform density, the thermodynamic prop-
erties are exactly the same in the PHE and in the HS
systems, but now we can generalize the theory of Lee to

describe inhomogeneous density distributions and corre-
lation structures from a free-energy functional of the po-
sition and angle distribution function, p(r, m). The in-

tegral of p(r, m) with respect to the angles gives the den-
sity distribution, p(r), which was constant in (1). The
interaction free energy per particle in HS is accurately
given by h@Hs[p(r)], where the averaged density, p(r),
is the convolution of p(r) with a weight function taking
into account the nonlocal structure. ' The modification
to PHE is straightforward, by simple scaling of the
weight function. ' The interaction part of our free-
energy-functional model is written as

AF[p(r, m)] „drdm p(r, m) aepHE[p(r)] fdr'dm'p(r', m')fHa(r —r', m, m')

dr'p r' fpHE r —r' (2)

where fHa(r —r', m, m') and fpHE(r —r') are the Mayer
functions, which give the second virial coefficients by in-
tegration over all the variables. We have to specify how
to choose the reference ellipsoid in (2). It has to resem-
ble as much as possible the real HB and reduce, by sym-
metry, to HS in systems without orientational order. We
have tested several ways and finally propose to do it on
the basis of the tensor of inertia of the HB, (I" (m)),
averaged over the orientations with the function p(r,
m). ' The length of the PHE along the principal axes
are taken so that the eigenvalues of its inertia tensor,
I; " (with i 1,2, 3 for the three principal axes) are pro-
portional to the corresponding eigenvalues of the hard-
body tensor of inertia:

IPHE IPHE IPHE
1 2 3

&Il" (m)) &Iz" (m)) &I3" (m))
(3)

This, together with the equal packing fraction, gives a
full specification for the choice of the reference system.
Equation (2) may be regarded as a way to study the gen-
eral HB system as a perturbation from the PHE system,
for which we can use the direct mapping onto HS. A
good prescription for the reference system may improve
the results of the approximation but, as long as the pro-
cess is done consistently, the choice of the PHE is not
crucial We beli. eve that (3) is just a convenient way to
take into account the molecular shape and orientational
distribution; other methods like minimization of the
Mayer function difference may be used, but they are
much more cumbersome to use, without improvement in

the results.
For any system with uniform density, p(r, m) =p(m),

our functional (2) reduces to the Lee approximation (1),
the use of PHE instead of HS being irrelevant for ther-
modynamics. Thus, the existing results for the isotropic
and nematic phases given by (1) will be recovered in our
theory. Here we start studying the system of parallel
hard spherocylinders for which the nematic-smectic-4
transition was first observed in a computer simulation. "

The reference PHE has a long axis parallel to the
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FIG. 1. Critical density in units of the complete packing,

p p/p, s, with p, p
2'i /[D +(f ) v LD l, and critical wave-

length (in units of the cylinder length L), for the nemat-
ic-smectic-A transition in a system of parallel hard sphero-
cylinders (the inset gives a sketch of the molecule). The circles
and squares give the computer simulation results of Ref. 11.
The dashed lines are the extrapolations to the parallel-cylinder
system corresponding to L/D

cylinder axis. The prescription (3) gives results very
close to other possible choices in this case, like keeping
equal length-to-width ratios. By a numerical solution of
the Euler-Lagrange equation for the functional mini-

mum of the free energy, we got the density profiles and
the free energy of the smectic phase, to be compared
with the homogeneous nematic. The results give a
second-order phase transition (in agreement with the
computer simulations" ) at the critical density p, and
with the smectic period A, 2x/q„which are shown in

Fig. 1 as functions of the length-to-width ratio of the
PHSC. The quantitative agreement with the simula-
tions" is quite good for p, and excellent for A, , in the en-
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tire range from nearly spherical molecules to the limit of
very elongated spherocylinders, for which the difference
from the ellipsoids becomes more important.

The transition being continuous, it is easier and more
instructive to look for it as the instability of the nematic
against a density modulation. The second functional
derivative of the free energy with respect to p(r) (keep-
ing all the molecules aligned, so that we may omit the
variable e) has a trivial ideal-gas part plus the interac-
tion contribution which is usually expressed in terms of
the direct correlation function. From (2) we get

6'aF
P ( ) ( g)

=CPHsc(r

CPHE(I r ) +AC(f r ), (4)

where the direct correlation function of the reference
PHE, CpHE(r), is given by an anisotropic scaling of that
of hard spheres, CHs(~r~). The second term in (4)
gives the difference between the PHSC and the reference
of PHE.

The instability of the nematic is given by a divergence
of the structure factor S(q), which may be easily ob-
tained from the Fourier transform of CpHsc(r). Con-
trary to the case of simple liquids, in a nematic phase
S(q) depends on the direction of q. For the PHE term
the dependence is only through a simple scaling of )q ~

and SpHE(q) will have no divergence before the full cry-
stallization of the system, as for HS. The term AC(r)
gives a correction which is small but very important be-
cause it produces S(q) diverging at a lower density along
the direction of the cylinder axis, so that the system goes
into a smectic-A phase.

We turn now to the question of a smectic-C phase,
with density modulation in a direction different from the
orientational director. We will show that this phase can
also be obtained from the packing effects of purely hard
molecules. Hosino, Nakano, and Kimura ' considered a
system of oblique cylinders, with the axes and the bases
of all molecules parallel to each other. The system may
be mapped into parallel right cylinders which have a
smectic-A phase (this corresponds to the L/D eo in

Fig. 1). The mapping takes the smectic-8 phase for the
right cylinders into a density modulation oblique to the
cylinder axis which was interpreted as a smectic-C
phase. However, this is not a real description of ne-
matic-smectic-C ordering, which is qualitatively
different from the smectic-2 case and needs a complex
order parameter to represent the amplitude and direction
of the density modulation. This difference is destroyed
in Ref. 12 by the direct ordering of the oblique cylinders
which corresponds to a biaxial phase rather than a
nematic phase. Instead we propose a model of oblique
cylinders with parallel axes but free rotation around
them. In the nematic phase there is perfect disorder in

the orientation of the bases, and the reference PHE will
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FIG. 2. Phase diagram for a system of parallel oblique
cylinders (see the inset for the definition of the shape parame-
ters). Nematic (N), smectic (Sm) A and C, and biaxial
nematic (B) phases may appear. The transition densities are in

units of the complete packing, p, t, =2/3'~2D L. The dashed
lines represent continuous transitions and the full lines are
first-order transitions. The circle separates first- and second-
order smectic-A -smectic-C transitions.

have the same symmetry as in the PHSC system. The
smectic-A order may be studied as before. When the
orientational symmetry is broken we get a biaxial nemat-
ic or, if coupled with a density modulation, a true
smectic-C phase. We have simplified the calculation by
doing the integral of the Mayer function in (2) in an ap-
proximate way, with only two particular orientations for
the bases: parallel and antiparallel. This will produce
no qualitative changes and we have no computer simula-
tions of this model with which to do qualitative compar-
isons. The resulting phase diagram in Fig. 2 gives the
transition density as function of 6/L, which is the
relevant shape parameter (see inset in Fig. 2). We get
continuous nematic-smectic-A transition for small h/L
(nearly right cylinders) and first-order nematic-
smectic-C transitions at larger /3/L. The smectic-
A-smectic-C transition has a tricritical point, in qualita-
tive agreement with Landau theory and experimental re-
sults. ' For large 6/L the nematic phase goes to a biaxi-
al phase before any smectic ordering. This kind of phase
has been predicted before, but in our model it may be
artificial because of the imposed perfect orientation of
the cylinder axis.

To conclude, we have shown that nematic-smectic-
A-smectic-C phase transitions can appear in systems of
purely hard molecules, as the result of end-to-end pack-
ing effects, This strongly supports the idea that an im-
portant part of the liquid-crystal structure and phase di-
agrams comes from the hard-core repulsions, which has
been neglected in many theoretical models, where the
smectic ordering was considered a result of the soft at-
tractive interactions. We have developed a free-energy-
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density functional which can be used to study the full

phase diagram of any hard-body system, and yields good
agreement with the existing computer simulations; we

present here applications to systems of parallel mole-

cules, but the theory is not restricted to that case. Work
is in progress to obtain the phase diagram of systems of
free hard molecules. Our treatment may also be used as
a reference system in the description of a real liquid

crystal, with the attractive interactions included as per-
turbation, following a scheme which has proved to be
very useful for simple liquids.
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