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Molecular Dynamics versus Hydrodynamics in a Tvvo-Dimensional Rayleigh-Benard System
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We compare a microscopic simulation of a fluid made up of 5000 hard disks and maintained at a su-
percritical Rayleigh number to the corresponding macroscopic hydrodynamics. Very good quantitative
agreement is demonstrated.
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Molecular dynamics (MD) provides an alternative
"experimental" approach to the study of macroscopic
and microscopic properties of simple fluids. Since the
early development of MD methods, it has been noted
that both equilibrium' and nonequilibrium model
systems display a variety of properties which can be un-

derstood on the basis of fluid mechanics. The validity of
the fluctuating hydrodynamics formalism in far from
equilibrium situations has been equally confirmed by
simulation techniques.

One of the latest complex problems simulated by the
traditional MD methods was the flow past an obstacle
(previous works are reviewed in Ref. 9). The number of
particles (argon atoms) involved was about 150000 and
the computation required sophisticated parallel process-
ing. Phenomena like vortex shedding, Von Karman
street, etc. , have been observed, all in qualitative agree-
ment with macroscopic hydrodynamics predictions.
However, no quantitative comparison has yet been re-
ported. Note that "cellular automata" models' repre-
sent an alternative approach to the handling of complex
(high Reynolds number) flows, but again comparison
with real experiments remains qualitative at best.

Another step in this direction was the MD simulation
of a hydrodynamic instability. " By increasing the im-

posed temperature gradient in a horizontal fluid layer
heated from below, the computer experiment shows the
passage from the chaotic random behavior of the parti-
cles to an organized collective behavior, where convective
rolls are observed (Rayleigh-Benard instability' ). The
fascinating aspect of this simulation lies in the fact that
the system was made up of 5000 particles (hard disks)
only. Given the small number of particles and the very
severe nonequilibrium constraints, it is legitimate to
question the nature of the observed phenomenon. Is it
still hydrodynamics or some other unknown microscopic
effect? How can such a small number of particles ever
give rise to a complex macroscopic ordering? A full
answer to these questions is far from being simple, as it
is likely to involve a reassessment of the basic ideas of
nonequilibrium statistical mechanics. In this paper we
shall address only a part of the problem, namely the ap-
plicability of classical hydrodynamics to such an extreme

nonequilibrium situation.
In the original MD simulation of the Rayleigh-Benard

problem, " the aspect ratio was set equal to 242. This
implies the possibility of having an interplay between
two or three convective rolls, which is precisely what has
been observed. For the purpose of a precise comparison
with a hydrodynamic approach, it is more suitable to
choose an aspect ratio so that a unique convective pat-
tern can hopefully settle down. We have therefore
reconsidered the MD simulation of an assembly of 5000
hard disks enclosed in a rectangular box of aspect ratio 2
(L„2L,). The vertical sides (X=O and X=L„) are
perfectly reflecting, meaning that the lateral boundaries
are stress free and insulating in the macroscopic sense.
The horizontal sides (Z 0 and Z=L, ) act only on the
normal component of the incident particle velocity:
Each time a particle hits a horizontal boundary, it is re-
injected into the system, conserving its tangential veloci-
ty component V„and having its normal velocity com-
ponent V, sampled from a Maxwellian distribution at
the temperatures of the walls. The horizontal boundaries
are therefore stress free with fixed temperatures. By an
adequate choice of units, the disk diameter, the particle
mass, the Boltzmann constant, and the equilibrium aver-
age temperature are set equal to unity. The global num-
ber density n (=5000/L„L, ) is chosen in such a way that
the values for the kinematic viscosity and the thermal
diffusivity are as small as possible, which in turn maxi-
mizes the Rayleigh number. This gives n=0.2 with
L, =111.8 ( L„/2). The temperatures of the walls are
set equal to T(Z=O) =1.61 and T(Z=L, ) =0.51. The
system is subjected to an external (gravitational) ac-
celeration I= —0.011z leading to a Rayleigh number
equal to 928, which is about 1.2 times the critical Ray-
leigh number. Note that the nonequilibrium constraints
are extremely strong: setting the disk diameter to 3 A,
the average temperature to 300 K, and the mass to that
of argon, one finds that the temperature gradient is 10
K/cm and the external acceleration field g =10'
cm/sec .

A Fortran program has been written to integrate the
particle positions and velocities in time and was run on
an IBM model 4341. For the purpose of measurement,
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FIG. 1. Final velocity field of the MD simulations. The local velocities are averaged in time over the last 2x10 collisions.

the system was divided into 20&40 cells (about six parti-
cles per cell on the average) and local instantaneous
macroscopic variables were defined as a space average
for each cell. A time average was then taken over every
400 collisions per particle (CPP). After a short random
period, the system shows strong coherent behavior exhib-
iting all kinds of convective patterns, switching from a
single roll to two convective rolls and vice versa. After
about 10000 CPP, the system finally ends up with two
rolls which subsequently remain perfectly stable for the
next 10000 CPP. The results we present here corre-
spond to an average over the last 8000 CPP. Figure 1

represents the velocity field, Fig. 2 represents the hor-
izontal component of the velocity for a slice located at
the center of the first convective roll (X=L„/4), and Fig.
3 represents the horizontal density profile at midheight
position (Z=L,/2). The error, estimated from succes-

sive statistics over 400 CPP, is of the order of 10% to
15%. Given the small number of particles per cell, this
relatively large error had to be expected. Much better
statistics is obtained for the vertical density and temper-
ature profiles since for these variables a horizontal space
averaging is also performed (around 240 particles per
horizontal slice). Here, the estimated error does not
exceed 5/0 (see Figs. 4 and 5).

Having obtained reasonably accurate data from our
computer experiment, we next solve the macroscopic hy-
drodynamic equations. According to the basic assump-
tion of classical hydrodynamics, we shall assume that
both the form of the equation of state and the (state
dependent) transport coefficients remain valid locally
(local equilibrium assumption). In other words, we take
the well known equilibrium form of the equation of state
and of the transport coefficients of a hard-disk Enskog
gas, ' but we replace the density and teinperature by
their local values. With the boundary conditions defined

above, the macroscopic problem is not complete. ' Note
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dom perturbation of the velocity field. The final pattern
resembles very much the one obtained in the MD simu-

lation (see Fig. 1). A quantitative comparison is illus-

trated in Figs. 2 to 5 which clearly demonstrate a very

good agreement.
To conclude, we note that besides their theoretical in-

terest, our results have some potential practical implica-
tions. They show that with a few thousands of particles
it is already possible to reproduce some of the complex
behaviors in normal fluids. Todays supercomputers
could easily handle 10 particles and very soon they
would be able to handle much more. MD will therefore
become a precious complementary tool both for the labo-

ratory experiments and for the more traditional fluid dy-

namics numerical methods. For example, MD allows

one to study the exact nature of boundary layers in some

extreme situations, which then can be used as an input
for the numerical integration of the Navier-Stokes equa-
tions. Work along this line has been recently reported in

the literature. '

Since the completion of this work, Rapaport' has re-

ported on similar numerical experiments where a 15000
hard-disk system shows a transition from a six-roll to a
four-roll structure. Although the boundary conditions
and the aspect ratio are different from ours, this tran-
sient behavior is similar to the transition from a one-roll

to a two-roll structure described above and such tran-
sients can be expected for times smaller than the lateral
diffusion time.
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