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Phase transitions of trapped particles and ions, observed initially in 1959 by collisional cooling and re-
cently by laser cooling, are explained as order-chaos transitions. Here, two trapped Ba ions are exam-
ined experimentally and by computer solution of the equations of motion. The ordered state, quasi-
periodic with two frequencies, becomes chaotic when a bifurcation introduces a third frequency at a crit-
ical value of a control parameter. This route evolves from the nonlinear Coulomb coupling of the ion

pair s axial and radial motions, displaying frequency locking and hysteresis, which is observed.

PACS numbers: 05.45.+b, 05.70.Fh, 32.80.Pj, 42.50.Vk

1959' Wuerker, Shelton, and Langmuir observed a
phase transition of charged aluminum particles stored in

a Paul or radio-frequency electric quadrupole trap. The
particles assumed an ordered array, a crystalline state,
when cooled by collisions with a background gas, but a
disordered state, characterized by a random motion with

large orbits, occurred when a control parameter achieved
a critical value. Recently, small numbers of laser-cooled
trapped ions have been observed to exhibit an ordered
state and a transition2 to a disordered state with hys-
teresis.

In this Letter, we present theoretical and experimental
evidence for this phenomenon being an order-chaos tran-
sition, an interpretation not considered previously. In
our view, the ion-trap system is deterministic, rather
than stochastic, since the relevant equations of motion

contain a radio-frequency driving term, dissipation, and
a Coulomb term which couples the ions nonlinearly—ingredients that should lead to chaos. ' We show
that the particles can execute a complicated motion in
the sense of a strange attractor while still remaining
bound to the trap. It is often remarked that the transi-
tion to chaos is analogous to a phase transition, for ex-
ample, to a spin-ordering ferromagnetic transition, but in

the present instance an analogy is not required because
the two phenomena coincide.

We have approached this problem by treating the sim-
plest case, that of two trapped ions having the same
charge e and mass m, this being one of the few examples
of chaos in a two-particle system. We write the scaled
classical equations of motion for the relative motion of

I

an ion pair as

d z/dx +I dz/dx+z[ —a/(r +z ) I +2qcos2x]+noise=0,

d r/dx +I dr/dx —r[a/(r +z )~l +qcos2xl+noise=0,

where (z, r) refers to the trap's axial and radial coordi-
nates and the tap potential V=V„(cosset)(z2—r2/2)/
r $, V„being the applied peak rf voltage and ro the trap
radius. ' The scaled time variable is x =At/2, where 0
is the micromotion angular frequency, and hence cos2x
signifies a driving term where the control parameter
q:—4eV,J(mQ r$). For the Coulomb term, a—=e'/
(m 0 ). The problem is two-dimensional because we as-
sume that the angular momentum about the z axis is
zero. On the other hand, the center-of-mass motion is
described by two Mathieu equations which do not con-
tain the Coulomb term and, therefore, cannot lead to
chaos. The significance of the noise terms is discussed
below.

The damping terms in (1) are appropriate for col-
lisional cooling as the Wuerker, Shelton, and Langmuir
experiments and are suitable as a first approximation to
laser cooling. However, new features emerge, which
makes the problem more complex, when these terms are
replaced by the scaled damping force due to laser cool-

F, .=46k, ,,yp22(A, Z, R)/(mn 2). (2)

Equation (2) expresses the rate of change of the recoil
momentum hk of the ion pair due to repeated resonant
optical absorption-emission cycles —a short-time average
over several cycles where y is the spontaneous emission
decay rate. Here, k, , is the optical propagation vector
projected along the z or r directions. Quantum-
mechanical solutions of the idealized two-state ion yield

p22, the ion s excited-state diagonal density matrix ele-
ment which is not only a function of the tuning parame-
ter h and the Rabi frequency X, scaled by the factor 2/0,
but also the ion pair's time-dependent position vector
R=r+z. In this way, the two-state semiclassical equa-
tions of motion are coupled to Eq. (1). Since 1/y is usu-
ally the fastest time scale encountered, the steady-state
solution

p22
= (X'/4)/[l& —k (r+ z) l '+ (y/2) '+ (x')/2I,
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which is velocity dependent, agrees closely with exact nu-

merical results.
In the small-q regime, a perturbation calculation of

(1) can be performed by separating the fast micromo-
tions and the slow secular motions and by expanding the
Coulomb terms about the equilibrium position zo =0 and
rII=2(a/q )'i. Interestingly, the Coulomb interaction
makes the radial and axial secular frequencies equal,
tu, =co„=qj—', or in ordinary units (qo/2) j—', . In con-
trast, the center-of-mass solutions of the Mathieu equa-
tions result in co, =2ru„=q/j2.

Computer solutions of (1), or in combination with (2),
show that as q approaches the transition point q, from
the ordered state, transients decay smoothly to their
equilibrium value where the Poincare diagram r' vs r
yields an attractor with a simple limit cycle, Fig. 1(a).
Here, the ion pair displays quasiperiodicity with two fre-
quencies, the micromotion (0) and secular frequencies
(co, =to, ). As q continues to increase, the Coulomb in-

teraction couples the z and r motions more strongly, and
a long-lived transient beat results prior to equilibrium,
the energy alternating between the two motions. At the
critical value q„the z, r coupling is strong enough to in-

duce the transition to chaos. The explosive onset of
chaos in Fig. 1(b) demonstrates not only an erratic tem-
poral dependence with a dramatic increase in the z, r
amplitudes but also that a radial bifurcation has oc-
curred with a new equilibrium position centered on
ro=0, Fig. 1(c). (Negative r implies the ions exchange
positions. ) The computer snapshots of Fig. 2 catch the
corresponding erratic spatial patterns that alternate in

time. In addition, the first return maps of r and z show a

characteristic fuzziness and structure associated with
chaos. We calculate that the Liapunov exponent, which
is another measure of chaos, changes sign at q, as ex-
pected with magnitude )j. =30.

At the equilibrium positions (ro, zp), zp 0 and the ra-
dial motion oscillates about ro at the micromotion fre-
quency. As a result, the axial and radial motions do not
interact, and thus, chaos cannot occur via this route.
The role of noise in Eq. (1) is to displace the ions from
equilibrium, changing the initial conditions but not the
deterministic behavior that follows. In the Wuerker,
Shelton, and Langumir experiments, noise arises from
neutral atom-particle collisions, but in laser cooling, fluc-
tuations in ion recoil due to spontaneous emission appear
and induce motions of about 0.2 pm which is sufficient to
couple r and z in the route to chaos. Thus, noise triggers
the initial r, z interaction which then develops dynami-
cally in a deterministic way.

Some physical insight into the nature of the transition
can be gained by the expansion of the Coulomb term
about the equilibrium position ro 0, zo (2a/q )'i.
The leading radial terms correspond to a double poten-
tial well of the form V= —Br +Pr4. The two ions can
now exchange positions, hopping back and forth between
the two wells, erratically at times and regularly at other
times with a radial period —j3 times larger than the or-
dered state, Fig. 1(c), where co, =q/2 j2, the frequency
of a single ion, since the ions are far apart much of the
time in the chaotic state making the Coulomb terms in

(1) small. This bifurcation breaks the degeneracy of the
r, z motion that existed for q (q, [compare the attrac-
tors of Figs. 1(a) and 4(b)l, and chaotic motion follows
in the spirit of the Ruelle-Takens model.

In addition, a rich variety of other phenomena are en-
countered such as hysteresis4'o and frequency locking, "
either for Eq. (1) alone or in combination with Eq. (2).
On reducing q from the chaotic regime, the hysteresis

I

'h

I

II

I II I I
It I

250
I I I I I I I I ~ I I I I I I I I I I I I I I I '. I I I I . I I I I I ! t I I I I I I I I I I I I I I I I I \

'
I t t I

I

(c)

FIG. 1. Computer calculations for the case q =0.73 and
a 16.2 with laser damping parameters h, = —20, X 30, and
v 12.5, and the peak r, z noise is 1.2 pm. (a) The limit cycle r'

vs r which characterizes the ordered state is centered on the
equilibrium ion-ion distance r0=2(a/q ) 'i . (b) The time de-

velopment of r, z showing equal secular frequencies m, =co, and
transient beats prior to a chaotic explosion. (c) Chaotic behav-
ior on an expanded time scale showing a bifurcation in r with

oscillations about ro 0 where 0:cu, :m, = 10:2:1.

-80

FIG. 2. Computer snapshots of chaotic z, r spatial patterns
where the conditions are the same as Fig. 1 but the time win-

dow x 100.
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FIG. 3. Hysteresis loops of the photon count rate vs the con-
trol parameter q. Experimental: solid line; computer solutions

of Eq. (1) where 1 =2x10 and the peak r, z noise is 0.2 mi-

crons: dashed line.
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loop of Fig. 3 appears. Frequency locking occurs in win-

dows of q, either in the return branch of these loops or
when q )q, . The simplest and first example to appear is

the dumbbell attractor, Fig. 4(b), where the frequencies
are locked in the integral ratios D:ro, :ro, =10:2:[, re-
vealed by its temporal behavior, Fig. 4(c). Its elongated
spatial pattern, Fig. 4(a), is also distinctive with a double
threaded path and two bird's heads, an interesting possi-

bility for observation. At higher q s, more complicated

attractors appear, and between the windows, the motion
seems to be random, that of a strange attractor where

Figs. 2(a) and 2(b) appear to be aberrational versions of
Fig. 4(a).

On the experimental side, the spatial behavior of two

trapped and laser-cooled barium ions (Ba+) ' was ex-
amined below and above the transition points (q„q,') of
the hysteresis loops. The electric quadrupole trap of ra-
dius ro=0.25 cm was driven at a frequency of 3.55
MHz. The background trap pressure was 10 9 Torr.
The ion pair was detected by scattered laser light at
493.4 nm, the 6 Pii2 6 Sii2 transition, and was also
cooled when resonantly excited by a cw dye laser tuned
to the red of line center at 5= —20 or —35 MHz, the
natural linewidth being 11-MHz HWHM. Simultane-
ous excitation by a second collinear cw beam at 649.9
nm, the 5 D3lz 6 Pii2 transition, avoided loss of ions
to the 5 D3i2 state. Both beams were focused to a 75-

pm beam waist at the trap center and had powers of
about 100 pW, the Rabi frequency of the blue beam be-

ing 1=64 or 7.2x10 rad/s. The scattered light was

viewed at an angle of 55' to the trap's z axis, and the ion
pair's image was magnified 50 times before falling in a
surface science imaging photon detector, with a count
rate of 1000 s ' per ion and a background of 50 s

For q (q„the Ba+ ion pair is in the ordered state, as

in Fig. 5(a) where the calculated and observed ion-ion

distances are 2zo =2[2a/(q +4a)] 'i =8.9 and 10.5
pm, respectively. To improve the presentation, the ions

are aligned parallel to the z axis by applying a 60-V dc
field between the end caps and the ring where the param-
eter a =qVdJV„, although normally Vd, =0. By slowly

increasing V„and hence q, the transition to chaos occurs
at q, =0.85~0.01, Fig. 3. On entering the chaotic re-

gion, the ion pair becomes an elongated cloud, about
40x15 pmz and oriented radially usually as in Fig. 5(b)
(compare Fig. 2). As q decreases on the return branch,
a narrow hysteresis loop occurs with a transition to the
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FIG. 4. Frequency locking of the dumbbell attractor, ap-
pearing on the return branch of a hysteresis loop. Computer
solutions of Eq. (1) for (a) z vs r, (b) r' vs r, and (c) r, z vs x
~here the micromotion and secular frequencies are locked in

the integral ratios A:co, :co, =10:2:1 and q 0.6, e =16.2, and
I 0.002.
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FIG. 5. Observed spatial patterns for two trapped Ba+ ions
in (a) the ordered state [V„=401V(rms); Vd, =59.6 V) and

(b) the chaotic state [V„=680V(rms); Vd, =01.
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ordered state at q,'=0.824-0.02. Since the ions remain
bound, the hysteresis can be reproduced as often as
desired. Similarly, for three Ba+ ions with the same
laser damping as the two-ion case, the observed transi-
tions shift to lower values with a wider hysteresis at

q„q,' =0.71,0.60.
The two-ion transition points q„q,' are signatures of

order-chaos transitions. The predicted value q, =0.85 of
the forward branch follows from solutions of Eqs. (1)
and (2) combined where a =16.2, 6= —20, X=64, and
y=12.5. Similarly, q, =0.85 results from Eq. (1) alone
where I =2x10, which is precisely the damping
coefficient calculated from the above laser parameters.
The transition was approached from q =0.3 in steps of
0.01 under steady-state conditions where a random-
number generator (range ~ 0.4 pm) shifts the final con-
dition in a given step, providing the initial condition for
the next. The almost perfect agreement in q, leaves little
doubt that the observed transition is from an ordered to
a chaotic state. Figure 3 shows the hysteresis where the
predicted (scattering rate ~p22) and observed count rate
ratio for the two states are in good agreement, being
-5. However, as yet, the predicted return branch does
not exhibit condensation in this q interval because the
high velocities arising in chaos require that our trunca-
tion errors be reduced.

In the experiments of Diedrich et al. , phase transi-
tions exhibiting hysteresis were observed in five laser-
cooled Mg+ ions, not only by varying q but also by vary-

ing 5 or Z as well. We suggest that these additional
transitions are due also to order-chaos transitions where
A and I appear as control parameters. In work to be de-
scribed elsewhere, we show that Eq. (2) can lead to
heating instead of cooling at appropriate values of 5 and

Z, even when the laser is tuned below the transition
frequency —a result not anticipated in earlier single-ion
laser cooling theories. Heating, of course, introduces a
potential instability in Eq. (1), but numerical solutions

suggest that chaos can result where ions are not expelled
from the trap because the damping force, Eq. (2), satu-
rates at high velocity. By varying h or X, a hysteresis

loop results when heating gives way to cooling and the
ions return to the ordered state.

Finally, we mention that the numerical solutions of
Eq. (1), the two-ion case, fall in the range of q, values

observed by Wuerker, Shelton, and Langmuir, namely,

q, =0.645 for 100 charged aluminum particles to

q, =0.866 for 3 particles, the exact numbers being sub-
ject to the collisional damping I and the charge-to-mass
ratio. In addition, hysteresis must have occurred even

though it was not reported. Our calculations could be
extended to more than two ions, providing additional
tests, but the basic phenomenon of an order-chaos transi-
tion will remain. More interesting is the possibility of
detecting the predicted frequency locking. Indeed,
trapped ions might prove to be a testing ground for ex-
amining still other aspects of chaos not addressed here,
particularly at the atomic level.
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tions to the experiment, K. L. Foster for his technical ex-
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