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We perform an analysis of exclusive heavy-ion reactions around 100 MeV/nucleon in terms of mul-
tipole moments of the momentum distribution of nucleons. Numerical calculations based on the
Boltzmann-Uehling-Uhlenbeck theory are presented and compared to an approximate scaling function.
We find that nuclei completely stop each other even at 100 MeV/nucleon, if Ap+ A7 > 200 in symmetri-
cal central collisions. We propose that the mass dependence of the quadrupole momentum tensor can be

used to determine the nuclear compressibility.

PACS numbers: 25.70.Np, 21.65.+f

At temperatures of =20 to 30 MeV/nucleon we ex-
pect nuclear matter to undergo a second-order phase
transition at the critical point.'™® This is essentially due
to the fact that the nuclear equation of state has a
short-range repulsive and a longer-range attractive com-
ponent similar to a van der Waals equation of state.

We hope to achieve these kinds of excitation energies
by bombarding of heavy ions with multi-GeV protons,?
where the spectator matter is heated up, and by colliding
heavy ions at beam energies around 100 MeV/nucleon,
where the participants can in principle reach the neces-
sary excitation energy. In this paper we want to concen-
trate on the latter.

Most theories predicting the existence of the fragmen-
tation phase transition assume completely equilibrated
infinite nuclear matter. In a previous paper,’ we have
addressed the influence of the finiteness of the fragment-
ing system on observables which can indicate the pres-
ence of a phase transition. In this paper we present a
study on equilibration in nuclear collisions. We will at-
tempt to answer the following questions: Can nuclei
completely stop each other at beam energies around 100
MeV/nucleon? Which heavy-ion systems should we
choose for experiments looking for signals of the phase
transition? What are the most sensitive observables to
nuclear equilibration?

In the following we will concentrate on a multipole
analysis of the final-state momentum distribution of all
nucleons, bound in fragments and unbound. Let as as-
sume that the momenta p; of all nucleons after the
nucleus-nucleus collision are known (either measured ex-
perimentally or calculated theoretically), and that we
can approximate the final-state momentum distribution
by

Ar+Ap

p(p)= X s(p—p). (1)
i=1
The monopole moment of this distribution is then simply

q =fdpp(p) =Ar+4p, ()

and the dipole moment is given by

Ar+Ap

p=[dppr®= L pi=0, 3)

where we have assumed that all momenta are measured
in the center-of-mass system. These two lowest moments
deliver only trivial results, but can be used in experimen-
tal measurements to correct the momentum distributions
for undetected fragments.

The lowest-order multipole moment of interest is the
quadrupole momentum tensor, which was previously
used to study thermalization times in nuclear collisions.®
Its matrix elements are given by

Q= f dp(3paps— p28ap)p(p)

Ar+Ap
= 'Zl [3(pi)a(pi)g—pi25a[;] . (4)
=
We would like to focus on the diagonal component of
Q,p in beam direction (which is assumed to be along the
z axis). First of all, we note that for a completely equili-
brated system @., =0, because in this case {p?)=(p})
=(p2). Second, we can calculate the value of @, for a
system of two noninteracting Fermi gases. For sym-
metric systems (47 =Ap=4) the momentum distribu-
tion is then given by

prc(p) =08(pr — |p—psé. | ) A4
+0(pr— |p+psé. )4, (5)

where prg is the Fermi momentum, p, is the beam
momentum in the center-of-mass frame, and €. is a unit
vector. Inserting this into Eq. (4), we obtain

P =44p}. (6)

To obtain the final-state momentum distribution in our
calculations we use the nuclear transport theory based on
the Boltzmann-Uehling-Uhlenbeck (BUU) equation®
with an equation of state yielding a compressibility
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FIG. 1. Q../(Ar+Ap) as a function of beam energy for a
central (5=0) collision of two heavy ions with mass Ar
=Ap=20. The dotted line represents the zero value. For
every data point 100 different events were calculated. The plot
symbols stand for the average values, and the width of the dis-
tributions are indicated by the error bars.

k=240 MeV of nuclear matter. The use of the BUU
transport theory has proven to be very useful to predict
energy spectra of emitted nucleons, and so it can be ex-
pected that final-state momenta in heavy-ion reactions
can be obtained from it with reasonable accuracy. De-
tails of the numerical calculations can be found in Ref.
10. In terms of the Wigner function f(r,p,t), which is
calculated with use of the BUU equation, @,; is given as

Q"=,l_i."lof—z‘%%(2p’2 —pi—p)f(r,p,t). @)
In Fig. 1, we present the results of our calculations for
Q../(Ar+Ap) as a function of the beam energy. We
chose a symmetric system with A7 =Ap =20 and central
collisions. We calculated 100 events for each data point.
The plot symbols represent the average value extracted
from these calculations, and the error bars indicate the
widths of the distributions. It can be seen from Fig. 1
that the value of Q,./(Ar+ Ap) is compatible with 0 up
to a beam energy of about 50 MeV/nucleon. After that,
Q../(Ar+ Ap) rises roughly linearly with beam energy.

By looking at the ratio of transverse to longitudinal
momenta, Kruse et al.!'' have reached quantitatively
similar conclusions in a Vlasov-Uehling-Uhlenbeck study
of the system Ar+Ca.

Figure 2 contains the results of our calculations as a
function of impact parameter b. Here we use Ar
=Ap=40. We fixed the beam energy at 100 MeV/ nu-
cleon. As expected, Q../(Ar+ Ap) rises with impact pa-
rameter from the central value up to the value of
2(ps™)? which is the value for the noninteracting sys-
tem, and which is represented by the dashed line in Fig.
2. From Fig. 2 we conclude that it is possible to distin-
guish between different impact parameters, if one is able
to measure the complete momentum distribution of all
fragments in an event by event technique using 47 detec-
tors. We believe that Q,,/(Ar+ Ap) can be complimen-
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FIG. 2. Impact-parameter dependence of Q../(Ar+ Ap) for
a beam energy of 100 MeV/nucleon and A7 =Ap=40. The
dotted line indicates the zero value, and the dashed line marks
the value of Q../(4r+ Ap) for two noninteracting Fermi gases
at a beam energy of 100 MeV/nucleon. The solid line is the re-
sult from the analytic scaling function, Eq. (8).

tary centrality trigger to the presently used total charged
particle multiplicity trigger.

The most important result of our calculation is
summed up in Fig. 3. Here we fix the beam energy at
100 MeV/nucleon and calculate Q,,/(Ar+ Ap) for cen-
tral collisions as a function of A7+ Ap. We can see a de-
crease of Q.,/(Ar+ Ap) as a function of the mass of the
system. For a combined mass of roughly 200, the value
of Q,;/(Ar+ Ap) becomes compatible with 0, indicating
a thermalized system. This means that we can obtain
completely thermalized heavy-ion systems even at 100
MeV/nucleon, if we only choose target and projectile
masses high enough. These kinds of systems should then
be used to study the fragmentation phase transition in 47
experiments.

Aichelin and Stécker mention similar findings'? by
studying the number of colliding nucleons in 85-
MeV/nucleon '2C collisions with various targets.
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FIG. 3. Q../(Ar+ Ap) as a function of the target and pro-
jectile mass for central collisions of symmetric (Ar=4p)
heavy-ion systems at a beam energy of 100 MeV/nucleon. The
dotted line marks the zero value. The solid line is the result
from the analytic scaling function, Eq. (8).
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In order to understand the scaling behavior of
0../(Ar+Ap) we may attempt to formulate approxi-
mate scaling laws. To do this, we assume that all nu-
cleons in the overlap region experience stopping due to
nucleon-nucleon collisions and the mean field of the oth-
er nucleus. The other nucleons are assumed to be un-
stopped. Furthermore, we assume that the stopping due
to the mean-field effects and nucleon-nucleon collisions
may be separated into individual reduction factors:

(sz=@zeG[(l —a)+aRM|:RNN] y (8)

where a is the fraction of nucleons inside the overlap re-
gion for a given impact parameter.

To obtain the reduction factor Rymr for the mean field,
we assume that the energy to compress the nuclear medi-
um is taken out of the beam energy. The expansion is
then assumed to proceed without a preferred direction.
Since Q.,/(Ar+ Ap) &« Epeam for the case of noninteract-
ing nuclei, the reduction factor due to the mean field is
then given by

Eveam _Ecomp
- .

Rymr )

Eveam
For a given equation of state, we can calculate the ener-
gy Ecomp to compress nuclear matter from normal
nuclear-matter density to some higher density. It can be
assumed that in these intermediate-energy heavy-ion col-
lisions nuclei are compressed to about twice nuclear-
matter density. Using a functional form '

U(p) =A(p/po) + B(p/po)° 10)

N=kp0'NNf0dx dyf_wdzldzzpr(x2+y2+212)]/zpp(x2+y2+z§) 12

where oy =40 mb is used, and the integration over x
and y is performed over the geometrical overlap area O.
Ap is a correction factor resulting from the fact that the
final-state phase space for the scattering nucleons is par-
tially Pauli forbidden. With use of geometrical con-
siderations, it can be approximated by

] 2
with h =(p; —ps)0(pr — ps).

Even though we expect the above scaling behavior to
be only an approximation, we can still test it by compar-
ing it to the numerical calculations based on the solution
of the BUU equation. The results obtained from Eq. (8)
are displayed in Figs. 2 and 3 and are represented by the
solid lines. As can be seen, the qualitative features of the
numerical calculations are reproduced. Even though the
right magnitude of Q,./(Ar+Ap) as well as the rise
with increasing b and the falloff with increasing A7+ Ap
is obtained in the approximate analytic calculations,
some quantitative differences remain. However, it can

2pR— Y h*Gpy—h)
(pr+ps)’

)\.p= 1-— (13)
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for the mean-field potential and o= %, ¥, and 2 for nu-
clear compressibilities of 200, 240, and 380 MeV, re-
spectively, we obtain Rmp(po— 1.9p9) =0.69, 0.63, and
0.31, respectively.

A more realistic estimate for Rpmp can be obtained
from solving the collisionless Vlasov equation for the sys-
tems in question. Doing this for the three equations of
state above, we obtain values of Rmp=0.60, 0.55, and
0.48 for the three nuclear compressibilities of 200, 240,
and 380 MeV, respectively. Therefore we obtain dif-
ferences up to 20% in the values of Q,,/(Ar+Ap), and a
careful measurement of Q,,/(Ar+ Ap) might give us ad-
ditional insight into the nuclear equation of state.

To calculate Ryy we assume that in two-body col-
lisions the final-state momenta of the two scattered nu-
cleons are isotropically distributed on the surface of a
sphere, the radius of which is given by the relative
momentum of the initial state. This approximation is
valid for beam energies which are not too high. In this
case, only the nucleons which have not experienced two-
body collisions still carry the original nonzero value of
Q... Therefore Ryy is in this approximation just equal
to the fraction of nucleons which have not experienced
two-body collisions during the course of the nucleus-
nucleus reaction. With use of Poisson statistics this frac-
tion is given by

Ryn =exp(—N), 1)

where N is the average number of nucleon-nucleon col-
lisions per nucleon'3

(12)

be stated that the gross features of Q,,/(Ar+Ap) and
therefore nuclear stopping are understood in intermedi-
ate heavy-ion reactions.

It is important to point out that Q,,/(Ar+Ap) as a
function of mass appears to be a tool to determine the
nuclear compressibility x from heavy-ion collisions. At-
tempts to determine this quantity via a flow analysis
were inconclusive, because the interplay between
nucleon-nucleon collisions and compression of the mean
field could not be properly separated. If the scaling be-
havior of Eq. (8) holds, then such a separation will be
possible, because R is independent of the mass of pro-
jectile and target, whereas Ryy is not. The use of
different nuclear compressibilities in numerical calcula-
tions will therefore result in an overall shift along the
vertical axis in Fig. 3, whereas different numbers of
nucleon-nucleon collisions will change in the steepness of
the curve. Of course, Eq. (8) is an oversimplification,
and careful numerical calculations with different as-
sumptions about the nuclear equation of state are neces-
sary.
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With the use of 4z detectors the predictions made
above can be tested. Since our calculations show that
complete stopping can be achieved in central symmetri-
cal collisions of heavy systems, we expect that the frag-
mentation phase transition can be studied in heavy-ion
collisions at intermediate beam energies. In addition, a
comparison of the predictions made above to the data
should yield a better understanding of the nuclear equa-
tion of state.
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