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Chiral Perturbation Theory and Final-State Theorem
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Timelike scalar and vector form factors are recalculated using chiral perturbation theory and disper-
sion theory. It is shown that chiral perturbation theory at the one-loop level violates the final-state
theorem (i.e. , unitarity). In order to satisfy this theorem, chiral perturbation theory should be applied to
the inverse of the form factor whose result is shown to be equivalent to the Fade-approximant method.

PACS numbers: 13.40.Fn, 11.40.Fy, 11.50.—w

There are two different approaches to implement the
unitarity correction to the low-energy chiral theorems
which are derived with use of the standard current-
algebra technique or the low-energy effective Lagrang-
ian.

The first one consists in the use of the well-known

technique of the dispersion relation together with the un-

itarity to get some singular integral equations; in its sim-

plest form, when the elastic unitarity is assumed, one
gets the singular integral equation of the Muskhelish-
vili-Omnes (MO) type whose exact solution is known. '

It corresponds to the summation of an infinite series of
graphs with two particles in the intermediate state. The
advantage of this nonperturbative method is that the
final-state theorem on the phase of the calculated ampli-
tude due to the strong interaction is exactly satisfied.

This constraint is important, because it is model in-

dependent, and should be used to check the validity of
the various approximations. This technique has been ap-
plied with much success in removing discrepancies be-
tween the current algebra or the low-energy effective
chiral Lagrangian predictions and experimental results
in EC nzev, g 3z, the I =0 S-wave pion-pion
scattering length, and the relation between EC 3z,
K 2x, and E z amplitudes. The discrepancies be-
tween theories and experiments are all of the same ori-
gin; namely, they are due to the neglect of the strong
final-state interaction of the two pion or the multipion
system.

The second method relies on the one-loop perturbation
theory, with the strong-interaction pion-pion amplitude
taken from an effective chiral Lagrangian, and is known

as the chiral perturbation theory (CPT). Although it
was first introduced about twenty years ago, it only re-
cently became popular thanks to an article by Weinberg
and more recently a rather complete analysis of Gasser
and Leutwyler on the pion-pion scattering and the pion
form factors. Unlike the dispersion method, the CPT as
implied by its name, is a perturbative method. Because
of its complexity, practical calculations are limited to the
one-loop approximation. The unitarity relation is not, in

general, obeyed.
As a special example, it is shown in this Letter that (i)

the usual one-loop CPT for the timelike form factor does
not satisfy the unitarity or the final-state theorem. '

This is a consequence of the perturbative approach and is

equivalently a poor approximation to the solution of the
MO integral equation. (ii) The CPT for the inverse of
the form factor, on the other hand, is a much better ap-
proximation to the MO integral equation, and satisfies
the final-state theorem to a very good accuracy. The cal-
culated form factors with this method are very similar to
the results given by the dispersion theory s ' and the
Pade-approximation method discussed below.

Scalar pion form factor with use of dispersion
theory. —Let us recall some well-known results of the
strong-interaction physics in the late 1950's. With use of
the analytic property of the form factor, it is straightfor-
ward to write a twice-subtracted dispersion relation for
the scalar form factor S(s),

s " 6o(s') ds'
G(s) =exp-+"4~'s'(s' —s —ie) ' (2)

where P„(s) is an nth degree polynomial in s with

P„(0)=1. Because the chiral symmetry does not require
that S(s) vanish in the low-energy region, we assume
that P„(s)=1. The unitarity relation which states that,
in the form of the final-state theorem, to first order in the
weak or electromagnetic interaction, and to all order in

the strong interaction, the phase of S is the strong-

S(s) =1+sS'(0)

s' ~" S(s')e '"sinbo(s')ds'
+

t2 Is (s s tE)

where p is the pion mass, s is the momentum transfer,
and the elastic unitarity is assumed; ImS(s) =S(s)
x exp( —iso)sinBo, 8o is the S-wave I=0 pion-pion phase
shift. We normalize S(0) =1 for convenience, and by
definition S'(0) =

6 (r, ), where r, is the scalar rms ra-

dius of the pion. Equation (1) is a singular integral
equation of the MO type. It will become obvious later
why a twice-subtracted dispersion relation is used in Eq.
(1); its formal solution is, however, independent of the
number of the subtractions. The solution of the MO
equation is well known, S(s) =P„(s)G(s), where
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ap(ff) = —,
' pL[1+ —,

'
p (r, )+ lip L/3tr] (4)

From this equation one obtains a0=0.123@ which is

much less than the scattering-length value of 0.20@
obtained by Gasser and Leutwyler from the correspond-

ing scattering process. This result clearly indicates that
the unitarity relation is not obeyed near the threshold.

At higher energy, the phase of S, as given by the CPT
to one loop, differs significantly from the experimental
phase shift Bp (Ref. 13), as shown in Fig. 1. There is,
unfortunately, no direct experimental information on the
modulus of the pion scalar form factor.

Vector pion form factor with use of chiral perturba
/ion theory. —Proceeding similarly to the calculation of
the scalar pion form factor, using a twice-subtracted

interaction phase Bp, is explicitly verified by Eq. (2).
This enables us to calculate the scalar form factor S in

terms of the experimental phase shift 6p. [When the in-

elastic effect is included G(s) can always be factor-
ized. "] In practice, G(s) is calculated by construction
from the partial-wave dispersion relation.

Scalar pion form factor S(s) with use of chiral per
turbation theory. —Instead of solving exactly the in-

tegral equation (1), the CPT consists in setting S(s) =1
and fp (s) =exp( —ibp)sinbp/p(s) by the expression

given by the Weinberg expansion, ' fp(s) =fp (s) =(L/
2)(s —p /2); p(s) is the phase-space factor and is equal
to (1 —s/4p ) 't2. With use of this approximation in Eq.
(1), it follows that

S(s) =1+sS'(0)—(L/2) [(s —p /2) fh(s) —h(0)]

+ (p'/2)sh'(0)], (3)

where L =(4' 2) ', f,=133 MeV, and for s ~ 4p, the
function h(s) is defined as

' ]/2

h(s) =—2 (s —4p') Js + (s —4p') 't'
ln —ip(s)

S 2p

and h'(s) is its first derivative. Equation (3) is the chiral
perturbation result of Gasser and Leutwyler which is

obtained here in a straightforward manner by the first-
order iteration of the integral equation (I) and without

going through the renormalization procedure. This
shows the advantage of the dispersion method and also
the limitation of the one-loop CPT method.

With use of the "experimental" result for the scalar
radius of the pion (r, ) =0.5 fm, which is similar to the
values obtained by Gasser and Leutwyler, it is straight-
forward to calculate the phase of the scalar form factor.
(We ignore here the uncertainties in determining (r, ). )
To see the violation of the final-state theorem near the
threshold in the CPT method, let us compute the corre-
sponding scattering length ap(ff) from the chiral pertur-
bation result of S(s), assuming that it has the correct
phase as required by the final-state theorem. From Eq.
(3), we have

g
C
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FIG. 1. Solid curves: Phases of the scalar form factors cal-

culated by a, CPT Eq. (3) and b, improved CPT Eq. (9). Solid
circles are some experimental S-wave, I=O, pion-pion phase
shifts as given by Estabrooks et al. as quoted by Martin, Mor-
gan, and Shaw in Ref. 13.

ImS(s) =p(s) [Sl(s)f1*(s)+S2(s)f1*(s)+S~(s)f2(s)],

where S& and S2 are, respectively, the first and the
remaining terms on the right-hand side of Eq. (3); they
represent the tree and the one-loop amplitudes. Similar-
ly, let f~ and fi be the corresponding I=O S-wave
scattering amplitudes. The scattering length calculated
with use of Eq. (6) in combination with the real part of

dispersion relation for V(s) and using the elastic unitari-
ty, we obtain the one-loop CPT result:

V(s) =1+sV'(0) —(L/12) [(s —4p') [h(s) —h (0)]

+4@'h'(0)s], (5)

where V'(0) = —,
' (r„) and r„ is the vector rms radius of

the pion. With use of the measured rms radius, r„=0.42
fm, the phase and the modulus of the timelike pion
form factor are calculated and shown in Fig. 2. It is seen
that at a high value of s they differ significantly from the
experimental data.

Higher loop effect. —Up to now, we have shown that
the CPT series are inadequate at the one-loop level. This
result is expected by examining the order of the pertur-
bation for the ratio ImS/ReS. It is simple to see that, if
one loop is included in ReS, to be consistent, the two

loop must be included in the calculation of the ImS.
More precisely, the perturbative unitarity relation for
ImS including two loops is
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we discuss a method to resum the perturbative series
such that the elastic unitarity is obeyed and that the res-
onant effect can be taken into account.

Improved chiral perturbation .—We wish now to show
that the chiral perturbation can be modified to satisfy
the final-state theorem. The final results are similar to
those given by Eq. (2). This can be done by writing
down the dispersion relation for the inverse of the form
factor. Let us consider, for example, the scalar form fac-
tor. (The vector form factor can be obtained in a similar
manner. ) After removing the zeros of the form factor, if
they exist at all, we can write a twice-subtracted disper-
sion relation for the inverse of the form factor. With use
of the fact that Im(S ') = —ImS/iSi and S is the
solution of the MO equation as given by Eq. (2), it fol-
lows that

10 20 3o SiP'=i)
FIG. 2. Solid curves: Phases of V(s) calculated by a, CPT

Eq. (5) and b, improved CPT Eq. (10). Solid circles are some
experimental P-wave pion phase shifts (Ref. 18). Dashed
curves:

i V(s) i calculated by cc CPT Eq. (5) and d, improved
CPT Eq. (10). Open circles are some experimental values of

i V(s) i (Ref. 18), (p-co interference effect is not shown).

S '(s) =1 —S'(0)s

~" e
' 'sinbo(s')S* '(s') ds'

4& s (s s i e)

From Eq. (2), S (s) has the phase —Bo so that the
phase factor is canceled out in the integrand. Similarly
to the CPT for the form factor, the CPT for the inverse
scalar form factor consists in setting S=1 and
sinbo/p =fo (s) in the integrand of Eq. (8). Hence

S(s) =Si(s) [1 —S2(s)Si '(s)] (9)
Eq. (3) is

ap(K)

Ref2(4p )= —,
'

pL ~ 1+ 1+ —', iu (r, )+ p Lf (4p~)
' 3x

(7)

With use of the value Ref2/f i =0.25 as given by Gasser
and Leutwyler, Eq. (7) yields ao(ff) =0.195@ '. This
value is much closer to the value of the scattering length
0.20iu

' computed from the real part of the scattering
amplitude, and hence the unitarity is satisfied in this
case.

It can also be shown that if one calculated ao from the
ratio of the imaginary to real part of the S-wave ampli-
tude to one-loop order, one would arrive at a similar nu-
merical result as Eq. (4) which is erroneous; the in-
clusion of the two-loop contribution to the imaginary
part would remove this discrepancy.

From the above discussion, it is clear that one could
try to include higher-loop effects to preserve perturba-
tively the unitarity condition. This method is, however,
complicated and may not provide the proper answer to
the problem because there is no guarantee that the ordi-
nary perturbation series converge on the unitarity cut;
for example, it is difficult to see how CPT even with
many loops, can produce a resonance. In the following,

where Si and S2 are, respectively, the first and the
remaining terms on the right-hand side of Eq. (3). The
scattering length calculated from this expression is
an=0. 23iu ' and agrees well with the experimental re-
sults. ' ' As can be seen from Fig. 1, the phase of S(s)
as given by Eq. (9) is also in a good agreement with the
experimental data.

The reason that the chiral perturbation series is better
with the inverse amplitude is due to the fact that
S 'fo (s) =fo (s) is a good approximation not only at
threshold but also throughout the elastic region, even
when the strong amplitude has a resonant character.
This is so because, apart from some kinetical factor,
S(s) and fo(s) have the same phase and approximately
the same energy dependence. To show this let us note
that, from the general consideration of the analytic prop-
erty of the elastic-scattering amplitude, one can write
fo(s) =fo (s)S(s)N(s), where fo is the Weinberg tree
amplitude and S(s) =G(s) and is given by Eq. (2); S(s)
contains only the unitarity (right-hand) cut, and N(s)
contains the left-hand-cut singularity and is a slowly
varying function in the region of the integration with
N(p /2) =1. We can therefore set N(s) =—1. It follows
that the numerator of the integrand of Eq. (8) is

fo (s)p(s) as prescribed by the CPT for the inverse am-
plitude.

Equation (9) is a special case of calculating G(s) with
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the more general N/D method for the partial-wave

dispersion relation when the left-hand cut is taken into
account [i.e. , the energy variation of N(s)]. This is why

the CPT for the inverse of the form factor yields approx-
imately the same results as the dispersion approach.

The same modification also holds for the calculation of
the vector form factor. In this case the improved CPT
yields

agreement with Eq. (9). The Pade-approximant method
should also be applied to the pion-pion scattering at
higher energy, the Ke4, rl 3tr (Ref. 17), and K 3tt
problems in the CPT approach.

It is a pleasure to thank G. Grunberg, P. Q. Hung,
H. Leutwyler, R. J. Oakes, and T. N. Pham for stimulat-
ing discussions.

V(s) =V, (s)ll —V&(s)V, '(s)] ', (10)

where Vl and Vz represent, respectively, the first and the
remaining terms on the right-hand side of Eq. (5). The
modulus and the phase of the form factor are calculated
and plotted in Fig. 2. It is seen that the agreement be-

tween theory and experiment is excellent. In particular
the p-meson mass is 760 MeV with a width of 142 MeV,
which is in excellent agreement with the data. In fact,
Eq. (10) is exactly the pion form factor given by Brown

and Goble, ' and Beg and Zepeda. '

The chiral perturbation theory as applied to the in-

verse of the amplitude is equivalent to summing an

infinite series of the bubble graphs with the two-pion in-

termediate state. By this procedure, the unitarity is

preserved and hence the final-state theorem is satisfied.
The one-loop CPT calculations, Eqs. (3) and (5), are

simply the first-order expansion of the right-hand side of
Eqs. (9) and (10) and therefore inaccurate. It should be
noticed that one cannot get a resonance behavior by ex-

panding as an infinite series the denominator of 5 or V in

these equations. This remark could be used as a sugges-
tion of the nonconvergence of the CPT series on the uni-

tarity cut.
Equations (9) and (10) are simply the diagonal [1,1]

Pade approximants for the (renormalized) perturbation
series. 's We give here the justification for their validity.
From the perturbation series for the partial-wave ampli-
tude f f~+fz, one can siinilarly construct the diagonal

[l, ll Pade approxiinant: f(s) =ft(s) [1 —fq(s)fl '(s)]
which has the advantage over the ordinary perturbation
series because the elastic unitarity relation Imf =p ~ f ~

is satisfied. The calculated value of ao from this equa-

tion, either by the real or the imaginary part method,
yields exactly the same result, an=0. 21p ' in a good
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