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The relationship between the maximum neutron-star mass and observable parameters of the equation
of state is explored. In particular, the roles of the nuclear incompressibility and the symmetry energy
are considered. It is concluded that, for realistic symmetry energies, the compression modulus cannot,
by itself, be severely limited by observed neutron-star masses. Several directions for further study are

suggested.
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The maximum neutron-star mass (M .x), subject only
to the constraints of causality and general relativity, has
been shown' to be ~3Mo (Me=2%10°*g). Observed
neutron-star masses generally lie well below this value.
The measured? mass of 4U0900-40, (1.85+0.3)Mo,
may provide the lower limit for the maximum mass of
the neutron star. The most accurate determinations? are
for the two components of the binary pulsar PSR
1913+16, (1.444%+0.01)Mo and (1.384+0.01)Mo.
Can the observed masses limit the equation of state
(EOS) of dense matter? Can the parameters of sym-
metric nuclear matter,* which have the potential of be-
ing measured in other contexts, be constrained? The
answers hinge on whether or not the bulk of the matter
in maximum-mass neutron stars lies close to symmetric-
matter saturation density, np==0.16 fm ~3. If the bulk
lies at much higher values the limits to symmetric-
matter parameters cannot be effectively constrained.
Here we examine the dependence of neutron-star struc-
ture on the EOS.

The importance of this sensitivity has bearing on other
issues as well. The EOS so obtained must be consistent
with those inferred from the analysis of giant resonances
in laboratory nuclei.’ They must also correspond to
what is obtained in the studies of particle multiplicities
and the matter, momentum, and energy flows in heavy-
ion collisions.® Finally, there may be a significant effect
of the EOS on supernova simulations as the strength of a
supernova shock is correlated”® with the behavior of the
EOS near ny.

Many approaches exist to determine the EOS through
the many-body theory of interacting hadrons. These can
be conveniently grouped into three types: (i) nonrela-
tivistic potential models,®'® in which two-body forces
determined from phase-shifts are employed and often
supplemented by three nucleon interactions; (ii) field-
theoretical models'' with and without scalar self-inter-

actions in which all calculations are inherently relativis-
tic; and (iii) hybrid models'>*'* of these other ap-
proaches. As far as neutron-star structure is concerned,
the only relevant quantity is the energy per baryon E (n)
expressed as a function of the baryon density n. From
E(n), the neutron-star’s radius, red shift, moment of in-
ertia, and binding energy, as functions of mass, can be
determined.!> In this Letter we concentrate on the
neutron-star’s maximum mass.

Neutron stars are in equilibrium with respect to weak
interactions. The proton concentrations x =Z/A in such
matter depend most sensitively on the symmetry energy.
Defining E(x=1%) as the energy per particle of sym-
metric nuclear matter, various studies'®'®"!® have re-
vealed that an excellent approximation for the specific
energy of neutron-rich matter is

E(nx)=Em,x=1)+Sn)(1—2x)2, (1)

where S(n)=E(n,x=0)—E(n,x=1%) is the nuclear
symmetry energy. We assume that Eq. (1) is valid over
the entire range 0 < x < 5 and for all n. The total ener-
gy per particle is obtained by adding the lepton energy
E;(x), and in B equilibrium, one has OlE(n,x)
+E;(x)]1/8x =0. The density dependence of S is uncer-
tain and will determine how x varies with n in a
neutron-star’s interior. Many nuclear EOS’s in current
use'®!® have S increasing with density near no, but then
saturating at a few times no, and finally decreasing. On
the other hand, potential contributions to S vary as n in
recent relativistic Brueckner'>'® and field-theoretic cal-
culations. '#17:2021 In general, the maximum mass of a
B-equilibrium configuration will be less than that of
either a pure neutron-matter or a symmetric-matter
configuration. The possible presence of hyperons, which
will alter Eq. (1), is discussed later.

In the context of a mean-field model with scalar self-
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interactions, Glendenning?® has argued that observed
neutron-star masses set a relatively large lower limit to
the compression modulus Ko. In particular, from the
one-standard-deviation lower limit to the mass of
U0900-40, 1.55M o, he derives that Ko > 225 MeV. He
states that saturation properties provide a clear con-
straint on Ko because more than half the neutron-star’s
matter lies at densities less than 3ny. Other approaches
have yielded a variety of results. For example, Prakash
and Ainsworth!” find results consistent with Glenden-
ning, using a linear o model. But the relativistic
Brueckner-Hartree-Fock  calculations of  Miither,
Prakash, and Ainsworth'® in which K¢=200 MeV have
maximum masses of the order of 2.4M . More recently,
Wiringa, Fiks, and Fabrocini'® have calculated a series
of potential models with Ky about 200 MeV and max-
imum masses in excess of 2M . It is true that the latter
two equations of state become acausal, but only at densi-
ties beyond that encountered in the maximum-mass case.
These results suggest that the behavior of the high-
density EOS is more important than the saturation pa-
rameters in the determination of neutron-star structure.

To investigate this relationship we consider a family of
simple parametrizations of E(n) as the structure de-
pends only on this function. The energy function is con-
strained to reproduce known nuclear properties and to be
causal at all densities. Ko will serve as an input parame-
ter. The parametrizations we use have only a modest
microscopic foundation; however, they have the merit of
being able to closely approximate more physically
motivated calculations. Our objective is to find if K¢ is a
useful diagnostic of the overall stiffness of the EOS,
which ultimately sets the neutron-star’s maximum mass.

It is common to employ local contact interactions to
model the nuclear potential. Such forces lead to power-
law density-dependent terms in E(n). Repulsive contri-
butions to E(n) that vary faster than linear give rise to
acausal behavior at high densities. To avoid this, we
write the interaction energy per particle of symmetric
matter as??> (4/2)u+Bu°/(1+B'u°""), where u=n/ng
and A, B, B', and o are constants. We note that the im-
plied self-screening of repulsive interactions, while desir-
able, is not always guaranteed in potential-model calcu-
lations. The total energy is obtained by inclusion of the
nucleon kinetic energies and the effect of finite-range
forces between nucleons. For static nuclear matter,?® a
term of the form

(4/h3)6(pr—p)
3
cu [dp o @)

in the potential-energy density closely approximates
momentum-dependent interactions of more realistic
nuclear-matter calculations. In Eq. (2), pF is the Fermi
momentum and A is a finite-range force parameter. We
use two such terms: one corresponding to a long-range
attraction and the other to a short-range repulsion. The

total energy per particle of symmetric nuclear matter is
then

=ly=2p© 2341 _ Bu®
E(nx=73)=3Efu*"+ 7 Au+ T+ B0
3
A.
+3X G| | | B —tan 120
i=12 PF A A;
(3)

Here EX° is the Fermi energy at saturation. Equation
(3) differs from that of Ref. 23 only in the extra finite-
range term (that with C,) which is needed to cover a
wider range of input Ko values. Similar parametriza-
tions are known to reproduce properties of finite nuclei’
and flow observables in heavy-ion reactions.®

To separate the kinetic and potential contributions to
the symmetry energy, we write

S=Q¥-1) IEPNu?P—Fuw)l+SFw),

where F(u) defines the potential contributions to the
symmetry energy and F(1)=1. We shall explore some
simple forms of F(u) which reproduce the symmetry en-
ergy of more realistic microscopic calculations. The pa-
rameters A, B, o, C, and C, are determined with the
constraints provided by the properties* of nuclear matter
at saturation. For o < I, we use B'=0, but employ small
positive values of B’ when o> 1 to keep the equation of
state causal for all densities. The finite-range parame-
ters were assumed to be A;=1.5p and A,=3p ®,
where p}m is the Fermi momentum of nuclear matter,
but it can be shown that the values of the other parame-
ters are insensitive to this choice. The parameter values
are shown in Table I for three possible values of K.

The properties of maximum-mass neutron stars, ob-
tained by the integration of the Tolman-Oppenheimer-
Volkov equation (cf. Ref. 15), are displayed in Table II
for the parameters shown in Table I and Sy=30 MeV.
The choices for F(u) mimic the results of the potential
and hybrid models referred to earlier. Results for the
maximum mass of a star with pure neutrons are shown
in parenthesis. For a given parametrization, the max-
imum mass roughly scales>*?* as K{/2 and the stiffer the
EOS the less important the symmetry energy.'’ Howev-

TABLE 1. EOS parameters [Eq. (3)] determined with
Eo=—16 MeV, no=0.16 fm 3 m*=0.7m, U(no,p=0)
=—76.34 MeV, A1 =1.5pf, and A;=3pf? for various values
of the compression modulus Ko. All energies in MeV.

Ko A B B' c Cy C>
120 75.94 —30.88 O 0.498 —83.84  23.0
180 44094  —213.41 0 0.927 —83.84  23.0
240  —46.65 39.54 0.3 1.663 —83.84  23.0
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TABLE II. The mass (M max), radius (R), central density (n.), moment of inertia (1), gravi-
tational binding energy (BE), and surface red shift (¢) of the maximum-mass neutron star are
listed for different choices of the potential contribution to the symmetry energy F(u) and
compression modulus Ko. Results for the maximum mass with pure neutrons are shown in

parenthesis.
Ko R 1 BE
F(u) (MeV) M ma/ Mo (km) ne/no (Mokm?)  (10% ergs) ¢
u 120 1.458(1.70) 9.114 10.841 43.83 3.431 0.776
180 1.722(1.90) 9.879 8.680 66.73 4.733 0.696
240 1.935(2.07) 10.57 7.269 90.93 5.890 0.677
2
—12:— 120 1.470(1.95) 9.895 9.631 49.36 3.260 0.749
“ 180 1.738(2.10) 10.318 8.166 70.82 4.572 0.708
240 1.952(2.24) 10.933 6.953 95.32 5.734 0.687
Vu 120 1.404(1.45) 8.435 12.28 37.75 3.476 0.712
180 1.679(1.71) 9.324 9.46 60.07 4.812 0.683
240 1.895(1.92) 10.112 7.740 83.83 5.954 0.667

er, even in the case Ko =120 MeV, relatively large neu-
tron stars (with Mp.x~1.5M@) are possible. In addi-
tion, the more rapidly rising is the symmetry energy, the
stiffer is the overall EOS. Changing the parameter Sy to
35 MeV has an almost negligible effect on S-equilibrium
stars, although the maximum mass of a pure neutron
star is somewhat increased.

Figure 1 shows the fraction of the gravitational-mass
exterior to a given radius versus the density at that ra-
dius for the maximum-mass configurations. Indepen-
dently of the EOS employed here, most of the mass lies
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FIG. 1. The fraction of the total mass of maximum-mass
neutron stars which lies at or below a given density. The po-
tential contribution to the symmetry energy F(u)=u is used,
and each curve is labeled by the compression modulus Ko in
MeV.
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at densities higher than 3n¢. Only for very stiff EOS’s is
this finding modified. Therefore, it is mostly the high-
density properties that play an important role!”'®2% in
neutron-star structure.

We have demonstrated that observed neutron-star
masses are consistent with Ky smaller than 140 MeV, us-
ing a plausible EOS that is consistent with empirical nu-
clear matter properties and causality. Other equally
plausible EOS’s!”?° have set a relatively larger lower
limit to Ko, e.g., in Ref. 17 M., =(1.36,1.45,1.50) Mo
were found for Ko=1(199,225,240) MeV and in Ref. 20
M =(0.8,1.3,1.5,1.8) Mo were found for Ko=(100,
200,240,285) MeV. In both these (field-theoretic) cal-
culations the potential contribution to the symmetry en-
ergy varied linearly with density. The calculations of
Ref. 20 included hyperons which substantially reduced
M 2. ® However, there are opposing points of view 2%’
regarding the importance and abundances of hyperons in
dense neutron-star matter. The fact is almost nothing is
known about hyperonic potentials from experiments. A
further uncertainty, at the densities where hyperons
might be abundant, is a possible transition to quark
matter in which case the role of hyperons may be re-
duced. Our results imply that it is possible to construct
an EOS at high densities, with acceptable saturation and
causality properties, and including hyperons, which nev-
ertheless has M .x= 1.5M¢.

The above discussion shows that the relationship of
M nax to Ko is extremely model dependent and this is our
main point. The compression modulus K¢ of symmetric
matter by itself does not provide a good model-inde-
pendent basis for contrasting the structure of neutron
stars. This is because the high-density EOS is uncertain
and there is no unique way to link the high-density EOS
to properties around no. Evidently, star properties may
not yet be firmly linked to equilibrium properties of sym-
metric nuclear matter.
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Several directions for further study are suggested: (i)
The symmetry energy, especially at high densities re-
quires additional consideration. (ii) There is a need to
carefully reexamine hyperonic interactions from both po-
tential and field-theoretic approaches. (iii) Can observa-
tions of properties other than the mass constrain the
EOS? The need for more detailed observations cannot
be overemphasized. Further efforts in these directions
may help to answer some open questions concerning the
equation of state at high density.
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