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Lyapunov Exponent for Quantum Dissipative Systems
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%'e define a Lyapunov exponent for a class of quantum dissipative systems which in the classical limit
can undergo a cascade of period-doubling bifurcations into chaos. We do so by computing the average
of a functional over a semiclassical trajectory for a dynamical system whose Poincare section corre-
sponds to the Henon map. In the strongly dissipative limit we establish a scaling law which determines
the way in which chaos can set in for finite values of Planck's constant.

PACS numbers: 05.45.+b, 03.65.Db, 03.65.Sq

While it is known that interference effects suppress
chaos in quantum conservative systems with time-
dependent Hamiltonians, the behavior of their dissipa-
tive counterparts can be quite different. Graham and
Tel, and Hida, showed that for strongly dissipative sys-

tems, such as a classically kicked damped oscillator or a
Josephson junction, quantum effects act as an external
noise source on the underlying deterministic dynamics.
Since there is a well established theory for the effect of
fluctuations on the dynamics of simple non-area-pre-
serving maps, one can use those results to study the na-
ture of quantum attractors.

Among the most useful notions of nonlinear dynamics
is that of sensitive dependence on initial conditions.
Briefly stated, when trajectories differing initially by a
small amount diverge from each other in the course of
time, the evolution of the system is said to be chaotic.
Mathematically this is connected to the positivity of the
so-called Lyapunov exponent, which measures the local
tendency of nearby trajectories to either expand or con-
tract onto each other. While this exponent is well

defined for classical systems, it is not so in quantum
mechanics, where the notion of trajectory loses its mean-

ing. Nevertheless, since in the semiclassical limit the
Wigner functions play the role of classical trajectories,
one can attempt to define a Lyapunov exponent in such a
limit and to study the onset of chaos as 6 becomes

finite. 5

In this paper we define a Lyapunov exponent for quan-
tum dissipative systems which in the classical limit can
undergo a cascade of period-doubling bifurcations into
chaos. We do so by computing the average of a func-
tional over a semiclassical trajectory for a dynamical sys-
tem whose Poincare section corresponds to the Henon
map. In our case the system is a pulsed harmonic
damped oscillator. In the strongly dissipative limit we
show that the aforementioned functional reduces to the
one computed by Shraiman, Wayne, and Martins for the
case of logistic maps. Using the results of Ref. 4 for
dynamical systems with noise, we establish a universal
scaling law which determines the way in which chaos
sets in when Planck's constant becomes nonzero. This
implies that a system, which is classically integrable for
a given control parameter, can be chaotic when its quan-
tum aspects are considered, in contrast to well known re-
sults in conservative systems.

Consider a pulsed harmonic oscillator whose dissipa-
tion is determined by its coupling to a heat reservoir.
The conservative part of the motion, in second quantized
notation, is given by the Hamiltonian
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H;„,=a+; (aR; +a R;), (2)

where a (a ) is the destruction (creation) operator for
the oscillator, and g(x) is the pulsing potential. Dissipa-
tion is assumed to be determined through the coupling of
the oscillator to a heat reservoir through the interaction

tures (kBT))h)). With these assumptions, a master
equation for the density matrix can be written, which
leads to a Fokker-Planck-type equation for the Wigner
function of the damped oscillator in between pulses.
Graham and Tel, following an approach introduced by
Berry et al. ,

' were able to construct a map which re-

W, +i(x,y) J dx„dy„K(x,y;x„y, ) W„(x„,y„), (3)
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where R; (R;") are bath operators. The distribution of lates the Wigner function, W„+), after the (n+ l)th kick
the reservoir modes, which couple to the oscillator to that after the nth pulse, W„, by
through the coupling constant a, is assumed to be such
as to give the phenomenological damping constant y.
Since the system should be Markovian, this imposes the
condition of weak coupling (y«p)) and high tempera- where y=[ p+p)—f(x)IE]Ao, f(x) =g'(x), E=e

and K is a kernel given by

and
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Here,

Q =h '[g(x+ —,
'
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with g defined in Eq. (1) and g' being its derivative,

1
—E hp)

Q = coth
2 B

e"M = lim
M)) 1,e 0

XM (Xp+ e) xM (Xp)
Xp l XMgp

For suspensions of the Henon map, f(x„) is given by any
unimodal function with a quadratic maximum. There-
fore, in the limit of strong dissipation (y 00) E 0,
Eqs. (7) reduce to the standard logistic map.

Since quantum dissipation can be associated to classi-
cal maps with noise, we can use the field-theoretic
method of Shraiman, Wayne, and Martin to compute
the Lyapunov exponent, k. To do so, we need to calcu-
late the correlation expression that defines it":

The above equations were derived with the particular
choice of r such that p)r =2yr(k+ —,

' ) with k an integer.
where
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Here [Dx] is a discrete path integration over the sequence x +i =f(x )+g, and (r is the variance of the Gaussian
random variable g representing additive noise. In order to solve Eq. (9) for our quantum problem, we define the aver-
age of a functional F[{X,y]] over a sequence {x,yl by weighting each step with the kernel of the Wigner function given
by Eq. (4). Thus,

(F[{x,y] ])=Z '
dx/v dy/v F(x/v, yiv ) dx/v idy/v )F(-x/v [,y/v ))K(xn, y-/v, xy/ -[,y/v -()--
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Notice that rather than averaging over an arbitrary sequence we restricted the integral to points {x,y] over the classical
Henon map, but weighted with EC.

Since we are interested in the Lyapunov exponent associated with the x direction, we integrate the function F over
the {yJ sequence and its conjugate {r/] to obtain
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Taking the strong dissipation limit, yr » 1, we can decouple the fiuctuation variable g„ from g„+i, reducing this expres-
sion to

(F[{ ]]) Z i, d F( ) iG(x~o;,n) dx F(x )
~n —i(„(x„+, f(x—~)l —
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Expanding this equation in terms of 6, with a C 1, and
keeping the lowest terms makes the factors containing G
drop out of it. Furthermore, in the limit N ~ and

fdyo Wo(xo, yo) 1, we obtain the general expression of
Shraiman, Wayne, and Martin, which enables us to com-
plete the calculation of Eq. (9) when F[{x]]is substitut-
ed by ix xo. From these results we see clearly that to
lowest order in 6, and for strong dissipation, the quan-
tum map becomes equivalent to a noisy one-dimensional
recursion relation, in agreement with the predictions of
Graham and Tel and of Hida. The noise terms are
Gaussian, with zero mean and variance given by

(g, g ) cr b„= coth i5„. (13)
2N B

The above results allow us to use, in the semiclassical
limit of strong dissipation, the scaling results" which re-
late the chaotic thresholds in the classical case to the
noise strength. If r + (o ) and r, denote the threshold
values in the presence and absence of noise, respectively,
then the Lyapunov exponent obeys the relation

7 (r, r+;o) =(r, r—+)'p((—r, —r+) 'a ), (14)

+ (037 (IS)

with the Lyapunov exponent satisfying a scaling law in
the vicinity of the transition, as 5 ' . ' Since it has
been well established4 that noise lowers the chaotic
threshold, we infer that for a given control parameter,
for which the system is classically integrable, the intro-
duction of quantum effects will make it chaotic, contrary
to well known results for Hamiltonian systems. '

We have thus succeeded at calculating the Lyapunov
exponent for a class of quantum dissipative systems
which in the classical limit have a period-doubling route
to chaos. Notice that unlike the Hamiltonian case,
where quantum interference effects suppress chaos, ' dis-
sipative systems can simulate a classical system with
noise, thereby lowering the chaotic threshold (a positive
Lyapunov exponent in a region where the classical sys-
tem is integrable). This result seems to suggest that
quantum effects make dissipative systems show a tenden-

with t =0.4498. . . and 19 0.37. Since for a fixed level of
noise r, —r + =o y with y =0.75, we see that in the semi-
classical limit the chaotic threshold (signaled by a posi-
tive value of X) is renormalized according to

t

cy to become chaotic at finite values of 1)'t, as a result of
the suppression of interference phenomena through cou-

pling to a heat reservoir.
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merical computations, is presently in progress.
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