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A density expansion is obtained for the time dependence of the survival probability of diffusing parti-
cles in the presence of randomly distributed diffusing traps. The coefficients are expressed in terms of
the exact survival probabilities in the presence of one trap, two traps, and so on. Its leading term coin-
cides with the well-known Smoluchowski result which is shown to be exact for static particles and nonin-
teracting mobile traps. As an application, the first correction term is calculated for a one-dimensional
system and arbitrary ratios of particle and trap diffusion coefficients.
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In recent years much effort has been devoted to the
formulation of rigorous many-body treatments of
diffusion-controlled reactions.!”'! Considerable atten-
tion has been directed to annihilation and coalescence re-
actions,'”” and to trapping problems with static
traps.”"!! For these systems, rigorous results for the sur-
vival probability have been obtained, at least in one di-
mension (1D). Experiments on quasi-1D conductors
were performed to check the static-trap limit.'© Rela-
tively little was done on trapping reactions (written sym-
bolically as A+B— B) when both particles (4) and
traps (B) are mobile.® As a physical example,'? 4 can
be an excited-state molecule which upon collision with
another molecule B gets quenched to its ground electron-
ic state.

The Smoluchowski approach'? to approximating the
time dependence of the survival proability (fractional
concentration), (S(¢)), of such an excited molecule in a
random distribution of quenchers is based on solving the
rate equation

d{S))/dt = —ck(@){S 1)) 1)

with a time-dependent rate coefficient, k(¢), obtained
from the reactive diffusive flux into a single trap with an
initial uniform distribution of A particles and a diffusion
coefficient which is the sum of the two diffusion
coefficients. The time-invariant concentration of B parti-
cles is denoted by c.

In this Letter we introduce a density expansion for the
survival probability. The leading term involves indepen-
dent particle-quencher pairs and coincides with the Smo-
luchowski result. The first correction term is a measure
of the accuracy of this approximation. We calculate this
term in 1D and show how it leads to an improved esti-
mate of the survival probability.

Consider a system containing random walkers (parti-
cles), with diffusion coefficient D,,, and N traps (quench-
ers), with diffusion coefficient D,, in a volume V in a d-
dimensional space. We assume that the particles have a
finite size but that the traps can be idealized as points
and hence are ignorant of each other. When the concen-

tration of the walkers is sufficiently low so that excluded
volume interactions between them are negligible, it
suffices to focus on a single walker.

Let xo and x;, i=1,...,N be the (vectorial) coordi-
nates of the walker and traps, respectively, in this d-
dimensional space at t=0. The survival probability of
the walker for the given initial positions of the traps,

Sn(t|xo,x1, ... ,xn), satisfies a many-body diffusion
equation
N
dSn/dt = |D,V3+D, X V?
i=1
XSN(tIXO,xl,...,XN), )

which is to be solved subject to the initial condition that
Sy(t=0)=1 and the boundary conditions that Sy =0
whenever the particle comes in contact with any one of
the traps. Note that while the diffusion equation is se-
parable in these coordinates, the boundary conditions are
not. This makes the problem hard. By introducing rela-
tive coordinates r; =x; —Xo, Eq. (2) is transformed into

N N
8Sy/8t=|(D,+D,) X V}+D, X ViV,

i=1 =1
XSN(tlrl,...,rN). 3)

Now the boundary conditions are separable, but if
D,,#=0, the diffusion equation is not separable. The
problem is still hard.

Ultimately we wish to calculate the survival probabili-
ty in the presence of uniformly distributed traps. This
average is denoted by brackets and obtained by integra-
tion over the volume accessible to the traps:

S @)=V N[ far, - drySaGln, ...
(4)

The survival probability for a concentration ¢, denoted
by (S (2)), is the limit of the above d x N-dimensional in-
tegral as N— oo, and V— oo, taken in such a way that
¢=N/V is constant.
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Our starting point is a density expansion analogous to one used by Haan and Zwanzig'? in treating the migration of
excitons between randomly distributed sites. This expansion is a generalization of the cluster expansion in equilibrium
statistical mechanics to dynamical processes. It is formally exact even when the traps interact, but its utility depends on
whether the coefficients are well behaved as ¥ and ¢ approach infinity. To the order considered here, there are no

difficulties.

For the present problem, the survival probability of Eq. (4) admits the expansion

Sy =1+Xa, )+ XNZD () NVNZDWNZD) iy )
| 4 2 3\
The unknown coefficients ax (¢) are determined by our requiring Eq. (5) to be exact for 1,2, ...,N traps successively.
In this way we find that
i) = [anlsGlr)—11,
ax) = [ [dridelsy(|r,r) =28, (1) +11, ©)

a3(t)-fffdr1dr2dr3[53(t|r1,rz,r3)—3S2(t|r1,r2)+3Sl(t|r1)—1],

and so on. To obtain (S(z)) we take the limit of large N and V but finite c=N/V. To improve convergence we ex-

ponentiate the series to obtain

(S(0)) =expleb (1) +c2b2(1)/2!+c3b3 (1) /314 - - - 1.

@)

This is a cumulantlike expansion of the many-particle survival probability in terms of the few-body dynamics that
determine the coefficients by, which are like Ursell functions. By demanding that the series expansions of Egs. (5) and

(7) agree up to the appropriate power of ¢, we get

b = fdrils, )11, (8a)
bo(0) = [ [aridn,18:0 [ r1,e) =510 1r)S G e, (8b)
b3(l)=fffdl'1dl'zdl'3[53(t |l’1,l‘2,l‘3)—3S1(t |1’|)S2(I |l’2,l'3)+2S1(t |l'1)S1(t !1‘2)S1(I |r3)] . (8c)

Expansion (7) is not necessarily valid for all times when
truncated at an arbitrary level. The lowest-order trunca-
tion,

(S (1)) =expleb(2)] =exp{—cf[1 L |r)]dr} , 9)

is expected to be valid at short times, since initially reac-
tion takes place only with (initially) nearby traps. To
demonstrate the equivalence with the Smoluchowski ap-
proach, we differentiate Eq. (9) with respect to ¢. It fol-
lows that the above (S(¢)) solves Eq. (1) with

k(1) = —db, (0)/dt = [ dxlds G | ©)/di].

This is indeed the reactive flux for a trap-particle pair
with a relative diffusion coefficient D,, + D;,.

In the limit of a static particle (D, =0) the cross
terms in Eq. (3) vanish. In the absence of trap-trap
excluded-volume interactions, the survival probability
factorizes as

N
SN(I Irl, Ce ,rN)=qS1(t |l',').
s

From Eq. (8) it follows that by =0 for all k= 2 and Eq.
(7) reduces to Eq. (9). An alternative way, analogous to

the treatment of static acceptors, ' is to first average the
above expression to obtain (Sy(¢))=(S,(:))". Taking
the limit N,V — oo, N/V =c, of the logarithm expanded
to first order gives Eq. (9).

We conclude that the first term in the expansion is ex-
act for arbitrary diffusion coefficients at short times, for
a static particle with noninteracting traps at all times,
and that it precisely equals the Smoluchowski result in
all dimensions. Equation (7) provides a systematic ap-
proach for improvement upon this approximation and
can also be used to estimate the errors involved in such
an approximation.

One expects the Smoluchowski result for mobile traps
and particles to improve as the dimensionality increases.
Hence it is of interest to examine the worst case of
diffusion in 1D. This may also be relevant to certain ex-
perimental systems.! To find the leading correction
term in 1D as a function of u=D,,/(D, +D,), we rewrite
Eq. (7) as

(S (1)) = expleb ()11 + 5 c2b,(1)]
=exp(— 1V 1+f27], (10)

where t=c%(D, +D,)t and the fi’s are related to the
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bi’s of Eq. (7). The distance between the ith trap and the particle is denoted by y;. The operator V; in Eq. (3) be-

comes a partial derivative 8/dy;.

The known '’ result for an absorbing boundary at the origin

S1(t |y) =erf{y/14(D,, +D)t1V8, y>0

(11)

(erf is the error function) allows us to evaluate f) from (twice) the integral of 1 —S) over y from O to c. This gives
f1=4/~/r. We obtain f, by rewriting Eq. (3) for one particle, two traps, and positive y;:

8S:" /8t =(D,,+D,) 3%yt +0%dy? +2u8%8y,9y2)S (t |y1,p2) . 12)

The cross term is positive for two traps on the same side of the particle (denoted by +) and negative for the two-sided
(—) configuration. f;" is subsequently obtained from Eq. (8b) by use of S of Eq. (11) and replacement of S, by S5*.

Finally, f,=/f7 +f7 .

One may solve Eq. (12) for noninteracting point traps by transforming it into a 2D diffusion in a wedge of angle 6y,
cosfp= = yu, and absorbing sides.> Integration of the Green’s function for this problem* in radial coordinates gives

re U (P +1,-(r2)]

s =8sindo f, rar f 6°am{

n=0 2n+1

where v =[(Q2n+1)x/6y % 11/2, 1.(r) are the modified
Bessel functions of the first kind and order v, and
6o =cos "'(* u) is the wedge angle for the * con-
figuration.

We were able to obtain f; analytically for several
special values of u. For u=1 we get f,=4In2—8/x, in
agreement with the short-time expansion of the survival
probability for static traps. To obtain the general solu-
tion for noninteracting traps we have integrated Eq. (13)
numerically and fitted it to f>=0.197u%+0.0285u%
with an (absolute) error < 0.001. This correction term
is relatively small because the terms f;~ have opposite

1.0 -0.5 0.0 0.5 1.0 1.5
log o T

FIG. 1. The time dependence [z=c2(D,,+ D,)t] of the sur-
vival probability for one-dimensional diffusion with mobile,
noninteracting traps for various values of u: Lower solid curve
is exact for static particles (¢ =0) and identical to the Smolu-
chowski result; upper solid curve is exact for static traps
(u=1); dashed curve for equal diffusion coefficients (u=7%)
and dotted curve for 4 =1 are obtained from density expansion.
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12 o .
8| < sinl(2n+1)76/6o]
| &

—erf(v/2rsin@)erf[v2rsin(8y—8)] } , (13)

signs.

Figure 1 shows the survival probability for three
different values of u. The two full lines are the exact re-
sults for static particles (u =0, the Smoluchowski result)
and static traps® (u=1). The u=1 curve is higher be-
cause reaction takes place only with the two neighboring
static traps, not with traps that were initially further
away.® Survival probabilities for other values of u are
expected to fall in the narrow region between these two
limits.

The utility of Eq. (10) is illustrated for two u values:
u=7% (dashed) and py=1 (dotted). =1 is the worst
case for the theory, yet the dotted curve agrees remark-
ably well with the exact solution for static traps, except
at very long times. The exact survival probability ob-
tained from accurate simulations for =3 is expected
to be almost indistinguishable from the dashed curve cal-
culated in the time range shown.

As can be seen in Fig. 1, the Smoluchowski result
remains accurate for longer times as u decreases. For
example, for equal diffusion coefficients the error is
=10% when (S(¢))=0.5. Since 1D is most unfavor-
able for a mean-field-like theory, one expects the accura-
cy of the Smoluchowski theory to improve even more
dramatically in higher dimensions. The density expan-
sion introduced in this work can be used to verify this ex-
pectation.
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