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Quantum Billiard in a Magnetic Field: Chaos and Diamagnetism
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The quantum mechanics of noninteracting electrons is studied in a nonintegrable elliptic billiard with

a uniform magnetic field applied perpendicularly. We make an attempt to establish a connection be-
tween chaotic dynamics and macroscopic quantum observables. For small two-dimensional systems, a
remarkable reduction and large fluctuations of the diamagnetic susceptibility are found in the corre-
sponding classically chaotic region.
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Despite the accumulation of studies on complicated
energy spectra of quantum chaos, most of the activity
has rather concentrated on local aspects of the spectra,
i.e., on level-spacing distribution and spectral rigidity at
fixed values of nonintegrability parameters. ' But global
aspects, e.g. , sensitivity of energies to the change of these
parameters, await much more profound investigations.
On the other hand, the spirit of natural science requires
us to find realizations of quantum chaos, and thereby to
establish the connection between chaotic dynamics and

experimentally accessible macroscopic quantum observ-
ables.

In this Letter, we consider the quantum mechanics of
noninteracting electrons in a planar billiard (e.g., a thin

conducting disk) in a uniform magnetic field normal to
the plane. The shape of the boundary is taken as elliptic.
Unless the boundary effects are taken into consideration,
quantum-mechanical treatment merely yields the Lan-
dau diamagnetic susceptibility. 3 (As for the puzzle of
the vanishing susceptibility in classical statistical me-

chanics, see the review by Peierls. ) Recent analysis of
single-electron classical dynamics, s however, elucidated
the onset of chaos in the case where the cyclotron radius
is comparable to the linear dimension of the billiard, in-

dicating the crucial role of the convex boundary. Quan-

turn aspects of chaos will be captured by the incorpora-
tion of Dirichlet-type boundary conditions. In the fol-

lowing, we shall first solve the Dirichlet eigenvalue prob-
lem for a single-electron system. Then, global aspects of
the spectra, i.e., the sensitivities of energies and their
average over "occupied" levels —the diamagnetic suscep-
tibility at absolute zero —will be investigated by our
changing the magnetic field. Effects of lattice discrete-
ness and of spin degrees of freedom will be suppressed in

the present treatment.
Let us consider an ellipse with area ttL2 =ttab where a

and b are semimajor and semiminor axes, in the x and y
directions, respectively. The eigenvalue problem is giv-
en by H~=E~ with ~=0 at the boundary. Here
H=(1/2m)[(h/i)V+(e/c)A] . We take a symmetric
gauge: A =(—

—,
' y8, —,

' xB) with 8 the magnetic field.
The present system has C2 (inversion) symmetry. Let
us consider the map (x,y) (r, 8) via x=arcos8,
y =br sinO. Then, the eigenvalue problem is reduced to
H(r, 8)+(r, 8) =Ee(r, 8) with @=0 at the boundary of
the unit disk. Basis functions are now constructed in

terms of integer-order Bessel functions as f ~
kn)}

—:IRg, Jk(yk, r)e'" }, where yk„are zeros of Jk(z) and

&k„=l 4~Jk ~ t (yk, )1 ' are normalization constants.
The j ~

kn)} are arranged in order of increasing values of
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yj„.Nonvanishing matrix elements of H are given in dimensionless form as

(h /2mL ) '(k'n'(H
( kn) =(rr/2)(1+a )I[2y$„/(acr) +28k/cr]I k„'k„+(8a /2)I

for k'=k and

(&/2)(1 —cr )I —2[(k+1)/a ]yk„Akg'kg+(yj„/a')rk„'k„+(Byk,/o)Ak„k„+(8a /4)I k„k„}
for k'=k+2 together with their real symmetric counter-
parts (k' k, n' n) He. re

I k „k„=Rk—'n'Rkn„r Jk'(yk'n'r) Jk (yknr)dr

and Ak(„k„is given by the replacement of the last factor
in this integrand by Jk+ l (yk„r). Further, we have intro-
duced the dimensionless parameters o =b/a, a =a/L,
b =b/L, and 8=8(ch/eL2) '. From these matrix ele-

ments, we recognize the following: (i) The Hilbert
space is decomposed into two subspaces of even (k =0,
~ 2, . . . ) and odd (k = ~ 1, ~ 3, . . . ) parity; (ii) in the
case of o =1, k is a good quantum number (i.e., angu-

lar momentum); (iii) for 8=0 with cr=l, eigenvalues
reduce to E =(h /2mL )yj„. In each of the two sub-

spaces, we have taken the lowest 150 basis functions and

computed the integrals I k „k„,Ak „k„,and thereby
(k'n'

~
H

~
kn) Then. , we have solved the eigenvalue prob-

lem for the dimensionless matrix above separately in

each manifold, to obtain scaled energies E =E(h /
2mL ) ', in the range 0 ( o ~ 1 and 0~8~ 50. In our

changing o, the area of the billiard has been kept con-

stant: a = I/Jo, b =Vcr We h.ave checked the reliability
of decimal places of the eigenvalues by comparing them

with the corresponding values obtained from enlarged
(200X200) matrices. We find that about the lowest 50
eigenvalues for each parity have sufficient precision for
our study. Below we present the results for a noninte-

grable case, a =0.5 (elliptic billiard), and the integrable
case o=1 (circular billiard). Comparison of the two

cases helps to elucidate the efl'ects of nonintegrability.
In Fig. 1, the even-parity part of the energy spectra is

shown. In both Figs. 1(a) and 1(b), most of the levels

(a) b)
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FIG. 1. 8-dependent energy spectra for the even-parity

manifold: (a) circle billiard (cr = I ); (b) ellipse billiard (o
=0.5).

are found not to be well bunched into Landau levels.
Level repulsion leading to avoided crossings is widely
seen in the case a =0.5 [Fig. 1(b)], while true crossings
between levels with different k values predominate in the
case a =1 [Fig. 1(a)].

The presence of many avoided crossing corresponds to
chaos in the underlying classical dynamics. The latter
was analyzed by the 2D bounce map for values of the arc
length and skipping angle at successive bounces of an
electron at the boundary. For eral, chaos around the
unstable diametral orbit and/or flyaway chaos are found
to dominate phase space, provided that the Larmor ra-
dius r, =rnuc/eB satisfies r, /L ~p;„for the smallest cur-
vature radius p;„=b/a. Noting E = —,

'
mv for electron

velocity u, we find r, /L =E/8 . Consistent with the clas-
sical findings, we clearly observe in Fig. 1(b) that avoid-
ed crossings dominate the spectra in the region E/8
& 0.35 for cr =0.5. More careful examination indicates
that most of the avoided crossings in this region have
much broader width than those discernible in the oppo-
site region.

We consider a sample containing 2N electrons, and
neglect the Zeeman splitting of the spin states. Then, in

the free-electron ground state at a given value of the ap-
plied field, the lowest N levels EJ(B) (j =1, . . .,N) are
filled with two electrons each, the Fermi level eF lying
between E~(B) and E~+ ~

(8). The isothermal suscepti-
bility per electron at absolute zero is given by the
second-order derivative (difference in our computations)
of the total energy as'

jv

Z= —(2N) 'A2 2+E /A82
, i=~

2mL
~

—lg A Ej

h

where pa is the Bohr magneton. The factor 2 in the
second expression denotes the spin degeneracy of each
level. The contributions to the sum in Eq. (1) are com-
puted separately for each manifold of different symmetry
(parity for owl, k value for o =1). In this way, singu-
larities of A E,/AB at true crossings are removed.
48=5.0X10 is chosen here, which induces variations
of eigenvalues [E~} within their reliable decimal places.
In Fig. 2, the negative of X is shown as a function of 8
for the case of N=100 occupied levels, where approxi-
mately 50 levels are of even parity and the remaining
ones a' re of odd parity.

For a =1, X is found to retain the essential features of
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FIG. 2. Negative of diamagnetic susceptibility Z as a func-
tion of B for N =100. Circle and square symbols indicate cr =1
and 0.5 cases, respectively. Heavy symbols and lines denote
combined contributions from both even- and odd-parity mani-

folds, while fine counterparts denote the contribution from the
even-parity manifold alone with energies below eF. In Figs. 2

and 4, Z is scaled by (2mL /tt )p$.

Landau diamagnetism in 2D systems: —I takes the
largest value in the vicinity of 8=0, and decreases
monotonically with increasing B. Note that the value of
X determined by the contribution from the even-parity
manifold alone exhibits almost identical results. Let us
trace back to Fig. 1(a): All crossings appearing in this
figure are true crossings between levels with different k.
Therefore, each energy level shows a smooth variation
with 8 with positive curvature d, EJ/AB & 0, which de-
creases with increasing 8. The characteristics of the di-
amagnetic susceptibility for o =1 shown in Fig. 1 are
thus well explained by the regular behavior of the spec-
trum which is a direct consequence of the integrability of
this case.

For cr=0.5, in contrast, I shows remarkably different
features: The value of —1 is greatly reduced at 8 =0 as
compared to the Landau value. It increases on the aver-

age with 8, recovering the value for o=1 only for
E~oo/8 +p;„,i.e., for 8+50. This increase is ac-
companied by large fluctuations and anomalous dips
(spikes), some of them even associated with positive
values of X. These features can be traced back to the be-
havior of the spectrum, which shows a multitude of
avoided crossings (AC) in each of the two manifolds [see
Fig. 1(b)l: The rapid variation of the two levels with 8
near an AC gives rise to anomalous contributions of
5 EJ/AB of opposite signs. If the AC is narrow and lies
below eF, the two contributions cancel in Eq. (1). But
most AC's have widths of order of or greater than their
mutual distance, such that their effects overlap. This
leads to a rather flat variation of each level with 8, with
a greatly reduced average curvature and large fluctua-

FIG. 3. Wavefunctions
~
+

~
at the avoided crossing indi-

cated by arrow in Fig. 1(b). ~=0.5 and 8=10: (a) E3$
=284.0230; (b) E33 285. 1459.

tions due to the nonuniform distribution of AC's. With
increasing 8 most AC's become extremely narrow, and
the 8 dependence of the levels approaches that for o = l.
Anomalous dips in —X occur for 8 values where eF lies
within a gap of an AC. (From an experimental point of
view, dips of this kind may be more or less suppressed by
possible extrinsic disorder such as impurities. ) Thus, the
anomalous features of the diamagnetic susceptibility for
o =0.5 shown in Fig. 2 reflect the effects of level repul-
sion and avoided crossings typical for a noninte-

grable system. Our additional data indicate an issue
worth noting: The reduction of I becomes more remark-
able and its fluctuations become less pronounced with de-
creasing a towards rr=0, while the opposite tendency is

found with increasing cr towards a = l.
Our findings cannot simply be interpreted in terms of

the traditional concept of bulk states and edge states,
since such distinction of states is not possible for the case
r, /L —1 considered in the present paper. Figure 3 shows
an example of wave functions of a pair of states at a typ-
ical avoided crossing indicated in Fig. 1(b). They exhib-
it a complicated delocalized structure due to superposi-
tion of contributions from many k values. In fact, they
can be attributed neither to bulk nor to edge states.

To examine the physical relevance of the characteris-
tics in Fig. 2, we proceed to study the N dependence of Z
for 8=0 and 25 in Figs. 4(a) and 4(b), respectively.
There exists a clear tendency that diA'erences of X be-
tween cr=1 and 0.5 are maintained [Fig. 4(a)] or even
enhanced [Fig. 4(b)] for increasing N as long as
Erv/8 ~p;„for the top of occupied levels in the system
with cr =0.5. This ensures that our findings may be ap-
plied to thin conducting disks containing a low-density
2D electron gas. Let us consider, for example, the inter-
face layer in semiconductor heterojunctions, where cur-
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FIG. 4. —1 as a function of N (1 ~ N = 100): (a) B =0 (b)
B =25. Broken and solid lines correspond to o.= 1 and 0.5, re-
spectively. The meaning of heavy and fine lines is the same as
in Fig. 2.

rent works concentrate on the quantum Hall effect. In
these systems, the electron concentration n is very low—typically, n =10' cm . Noting that the Fermi wave
number kF=-n'(2 in 2D, we have kF=10 cm '. For
the above n, N =10 corresponds to L = 10 cm. Then
Ftv =-8.0x10 for o =0.5 and the interesting aspect of
quantum chaos is seen for 0&8&50, i.e., for 0 &8
&2.5 T. The de Broglie wavelength -kF ' is large
enough for the results to be insensitive to the lattice
discreteness both within and along the boundary of the
interface layer. In ordinary metal disks, on the other
hand, n amounts to 10' cm ', which corresponds to
kF= 10 cm '. Then the de Broglie wavelength is com-
parable to the lattice constant so that the results will be
more or less modified. We should note one more com-
ment regarding the experimental viability of our theoret-
ical issue: Couplings of electrons with atomic-scale de-
fects (e.g. , impurities and imperfections) and with pho-
nons at finite temperatures, which are inevitable in real
materials, may yield additional avoided crossings in the
electronic energy spectra. But they will occur in com-
mon in elliptic and circular billiards, resulting in a re-
duction of the common background for the diamagnetic
susceptibility. So our predictions due to the determinis-
tic chaos will still be verified in real experiments for
small 2D devices so long as both the temperatures and
the concentrations of atomic-scale defects are low

enough.
In conclusion, chaotic dynamics in the nonintegrable

elliptic billiard in a uniform magnetic field is found to in-
duce a remarkable reduction and large fluctuations of
the diamagnetic susceptibility, whereas the integrable
circular billiard yields results close to Landau diamagne-
tisrn in 2D.
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