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We explain from an intuitive renormalization-group perspective how “collapse of the wave function”
in quenched quantum electrodynamics leads to coupling-constant renormalization and an interacting ul-
traviolet stable fixed point. A diagrammatic expansion in Ny, the number of fermion species, suggests
that vacuum polarization leads the fixed point of the quenched model stable, and computer-simulation
data support this possibility. The scaling region of the quenched lattice model is discovered numerically.
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What happens to quantum electrodynamics (QED) as
the bare charge eq is taken large? For eo~1, perturba-
tion theory is an unreliable guide to the physical content
of the theory. However, most physicists appear to be-
lieve that the coupling-constant renormalization problem
in the theory is controlled entirely by the ultraviolet
structure of the photon propagator and that vacuum po-
larization reduces the coupling as the cutoff is reduced.
In fact, impressive arguments have been made based on
high-order perturbative analysis that the resulting renor-
malized theory is a free field (the “Moscow-zero” or
“Landau-ghost” problem).'

In this paper we consider a radical but hopefully com-
pelling physical picture of strongly coupled QED. We
suggest on the basis of the solution of the chiral dynam-
ics of the quenched model, a diagrammatic analysis for
small Ny (Ny=number of species of dynamical fer-
mions), and computer simulations of the N;=0, 2, and 4
theories, that QED possesses an ultraviolet-stable, infra-
red-unstable fixed point at strong coupling. The physical
basis of this nonperturbative fixed point is “collapse of
the wave function”?— for sufficiently large eq the attrac-
tive potential between a e e = pair overwhelms their
centrifugal barrier and their wave function develops a
1/r singularity which leads to chiral-symmetry breaking
and a probability of order unity that the e Te ~ pair col-
lide. The 1/r singularity is a nonperturbative source of
coupling-constant renormalization which produces a neg-
ative Callan-Symanzik function. The stability of this
physical picture to the introduction of light dynamical
fermions is discussed within a N, expansion. We specu-
late that the crucial physical phenomenon of collapse of
the wave function survives vacuum polarization for small
Ny and leads to an interacting field theory in which there
is intense screening. Computer simulations of the NV, =0
theory expose the scaling law of the chiral condensate
(yy) predicted by this physical picture and computer
data for (yy) at Ny=2 and 4 suggest that this mecha-
nism survives vacuum polarization. We comment on the

relation of this physical picture to the fermion-monopole
kinematics the underlying catalysis of proton decay.

We will illustrate our ideas in the context of the Dirac
equation describing a light fermion bound by a static
Coulomb potential.> The results we emphasize can also
be obtained from a Schwinger-Dyson equation analysis
of two light fermions in QED when vacuum polarization
is ignored. It is easily seen from the square of the Dirac
equation that for a= a,=1, the Coulomb attraction
overwhelms the centrifugal barrier and the system im-
plodes. For small distances the wave function behaves

as?

w(r) ~sinl(a?—a2) 2In(r | e DV/r(a® —a2)'?, (1)

where € is the bound-state energy of the lowest-lying s
wave. Letting r— 0, ¥(r) oscillates at an ever increas-
ing rate and the system fails to exist. To understand this
problem better we cut off the 1/r potential at a distance
ro and solve the equation again. The cutoff at r¢ pro-
vides a nonperturbative regulation of the theory. If we
demand that € is fixed, independent of rg, then @ must
become a function of ro. From Eq. (1) we see that if

nz

2(rg) =a2+ ———, @)

a’(rg) =a ol eD) a)
then

e=—iexp[—7r/(a2—a3)l/2] (2b)

ro

is finite and independent of the cutoff ro as ro— 0.
When a— a., the bound-state wave function Eq. (1) be-
comes

v(r) ~, In(1/r|el)/r, 3)

which is a sensible, renormalized wave function. Follow-
ing Miransky we interpret a. as an ultraviolet-stable
fixed point.> One can define a beta function from Eq.
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(2b), or, even better, from the Schwinger-Dyson analysis
of the relativistic e Ye ~ problem,*

9 _ 2a.
Yy a(A) 0

A=1/r0, 0<6<m,

Bla) =A (a/a.—1)*?, 4

whose minus sign indicates that the effective coupling
grows large at low momenta.

These equations can be interpreted in a renorm-
alization-group picture. Our analysis below indicates
that the 1/r behavior of ¥(r) in Eq. (3) is the source of a
new ultraviolet divergence and coupling-constant
renormalization in QED. Consider a <a.. Then the
theory’s bound-state wave functions are less singular
than Eq. (3) and energy levels computed in the quenched
theory are insensitive to short distance modifications of
the a/r potential. This is simply because the probability
to find the bound state e Te ~ separated by a distance
less than r falls to zero as r— 0, i.e., | ¥(r) | L 24rda
approaches zero as r— 0. Such relatively well-behaved
wave functions underlie most physicist’s intuitions into
quantum mechanics. However, for the collapsed wave
function Eq. (3) the corresponding probability does not
fall to zero. This means that the low-energy spectrum of
the potential model is sensitive to forces at vanishingly
small length scales. To understand the minus sign in Eq.
(4) we consider a renormalization-group calculation of e.
Regulate the theory in momentum space and integrate
out the high-frequency (|g| > go) fluctuations in the
potential a/r. The resulting theory has a lower cutoff in
momentum space and a larger effective coupling. The
effective coupling is amplified because it incorporates im-
plicitly the high-frequency photon exchanges which
cause the e * and e ~ to attract one another at short dis-
tances. Equations (2a) and (2b) are the configuration-
space realization of this effect. Equation (2a) states that
if the Coulomb potential is cut off at a larger r( then to
compensate for some otherwise lost e te ™ attraction,
a(ro) must be increased to keep the binding energy un-
changed.

The same physics can be discovered in the quenched
planar field theory analyzed with the Schwinger-Dyson
equations. Collapse of the wave function occurs and
dynamical chiral-symmetry breaking occurs in the new,
stable strong-coupling vacuum. One finds a. =nr/3 and
the scaling law Eq. (2b) governing the dynamical fer-
mion mass m. The renormalized chiral condensate also
scales,?

(FWen= —8m3/n? (5a)
with
m=a 'exp[—6/(a—a.)"?], 0<O<~r, (5b)

where a is the space-time cutoff. Equation (5b) is the
relativistic generalization of Eq. (2b) and the source of
Eq. (4). The quenched theory has nontrivial chiral dy-

namics with a composite massless pion which is a Gold-
stone boson and f,=0.2 Equation (5a) allows us to
search for the crucial scaling law Eq. (5b) in computer
simulations, as will be demonstrated below. The per-
plexing feature about Eq. (5b) is the following. Critical
behavior in four space-time dimensions is usually well
approximated by the Landau mean-field theory where an
order parameter such as (¥¥) should satisfy the scaling
law (a —a.) 1/2, a> a.. Only if we analyze the Schwin-
ger-Dyson equations at strong coupling a>> a., where the
dynamical fermion mass is of order 1/a, do we find®

m=a _l(a—aMF)'/z, amr =4a, (5¢)

instead of Eq. (5b). Thus, this theory displays a classic
crossover phenomenon between mean-field behavior
away from the critical region to a fluctuation dominated
nontrivial scaling behavior at the critical point. Equa-
tion (5¢) has also been confirmed for a>> a, in computer
simulations, as will be demonstrated below.

The central question is whether this physical picture
and its scaling law survive the introduction of dynamical
fermions. The quenched model is simply a toy and could
be misleading. Collapse of the wave function is the cru-
cial phenomenon because its space-time singularity gen-
erates a new source of coupling-constant renormalization
which leads to an ultraviolet-stable fixed point. Does the
collapse of the wave function survive vacuum polariza-
tion?

Consider QED with Ny species of fermions with Ny
infinitesimal. In the quenched (N;=0) case the e e ~
bound state is generated by the graphs of Fig. 1(a). Ac-
tually the Schwinger-Dyson equation includes only the
planar graphs, but we will include all photon exchanges
since they occur in the computer simulations. Now con-
sider the first correction to this figure in a N, expansion.
It contains one fermion loop whose momentum is labeled
k in Fig. 1(b) and a sum over all photon exchanges is

(a) (b)

FIG. 1. (a) The quenched graphs binding a e ™ and e ~ to-
gether into a collapsed wave function. (b) First loop correction
to (a).
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implied. The high-frequency photons of Fig. 1(a) pro-
duce the coupling-constant renormalization Eq. (4) of
the quenched model and the collapsed e *e ~ wave func-
tion. In Fig. 1(b) there are two regions of the k integra-
tion which produce the coupling-constant renormaliza-
tion. The first region is small k> where, as suggested by
the figure, two collapsed bound states form and propa-
gate. Each bound state is electrically neutral so they in-
teract via dipole forces in this set of graphs. The second
region is large k2 where there is a familiar fermion
vacuum-polarization correction to the photon propagator
attached to the two through-going fermion lines. Since
the coupling is large we must consider all internal photon
corrections to the loop. We cannot calculate such
effects, but let us assume that they lead to screening of
the photon propagator as occurs at low orders of pertur-
bation theory. This effect may not lead to a free field
theory because the low k2 piece of Fig. 1(b) persists and
it leads to two collapsed wave functions (mesons)
through the virtual dissociation of the incoming meson.
In a Ny expansion there will be an O(Ny) correction to
the Callan-Symanzik function of Eq. (4) coming from
Fig. 1(b). Vacuum-polarization corrections to single
photon exchange will presumably contribute positively
while collapse of the wave function effects will contribute
negatively to this term. If this expansion makes sense,
then the B function of Eq. (4) will continue to have a
nontrivial zero order by order in Ny. It is certainly not
clear, however, if there will be a nontrivial zero when the
Ny expansion is summed.

To make further progress consider the computer simu-
lation study of this theory. We simulated the N, =0, 2,
and 4 theories using the hybrid algorithm of Ref. 5. The
gauge fields were noncompact and the pseudofermion
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FIG. 2. Quenched data of (¥¥) extrapolated to zero fer-
mion mass vs B=1/e2 The fits are described in the text.
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fields were represented by stochastic noise so that any
number of fermions could be simulated. The data to be
shown here were taken on 8% and 83x16 lattices with
dynamical fermion masses of 7 =0.02 and 0.04 to allow
m— 0 extrapolations of the physical quantities of in-
terest. We will emphasize the chiral condensate (¥¥)
here since it should expose the scaling laws of the contin-
uum theory. In the quenched theory, we measured (¥ ¥)
from B=1/e?=0.32 to 0.10 in steps of AB=0.01 as
shown in Fig. 2. 125000 sweeps of the algorithm with a
time step of 0.02 were done and (¥¥) was measured at
five distant lattice sites after every 1000 sweeps. In Fig.
2 we show a fit (W¥¥)~(B—2.4)"2 at strong coupling
and a fit (¥¥)~exp[—6/(8—0.36)"?] at weak cou-
pling. The scaling region extends from $=0.29 to 0.32.
Finally, in Fig. 3 we show (¥¥) vs g for Ny =0, 2, and 4.
The Ny=2 and 4 simulations required an order of mag-
nitude with more computing power per iteration than the
N;=0 curve so that only 10*-5x10* sweeps of the algo-
rithm could be done at each 8 and m. Nonetheless, the
curves again suggest scaling regions with essential singu-
larities, although the scaling windows are narrower than
in the quenched case. Plausible fits similar to Fig. 2 can
be made® and simulations on larger lattices are in prog-
ress to remove finite-size effects. The steepness of the
Ny=4 curve suggests that for N, slightly higher the
mean-field scaling law will become exact at all § and
such theories will be free in the continuum limit.

Other computer studies of the theories have been
made. We have good evidence from simulations on
2x83 4x83 6x12° and 8x16° lattices that the Ny =4
theory has nontrivial temperature dependence charac-
teristic of an infrared-unstable fixed point.® We plan to
improve the quenched data by simulating a 16>x 32 lat-
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FIG. 3. Ny=0, 2, and 4 data of (¥¥) vs §.
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tice using the accelerated hybrid algorithm and measur-
ing (¥¥) using the Lanczos algorithm so that n— 0 ex-
trapolations can be avoided.

In summary, this Letter suggests a simple physical
picture of strongly coupled QED based on a nonpertur-
bative source of coupling-constant renormalization asso-
ciated with the collapse of the wave function. This new
source of renormalization may generate an interacting
theory of mesons in which free fermions do not exist.>
Finally, the similarity of the collapsed wave function Eq.
(3) and the fermion wave function in the presence of a
monopole suggests other common features of these two
phenomena. The collapsed fermion wave function
around a monopole leads to catalysis of proton decay
with decay amplitudes of unit strength.” Similarly, we
believe that strongly coupled QED acts as an amplifier of
symmetry breaking interactions at short distances. This
and related effects will be the subject of a forthcoming
Letter. And, of course, the sketchy ideas of this Letter
will be amplified themselves in a series of full-length ar-
ticles containing Schwinger-Dyson analysis and extensive
supercomputer simulations.
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