
VOLUME 61, NUMBER 21 PHYSICAL REVIEW LETTERS 21 NOVEMBER 1988

Monte Carlo Study of Fermion-Number Fractionization on a Lattice
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We study the fermionic charge fractionization in two dimensions on a lattice using the Monte Carlo
method. In order to avoid the fermion-doubling problem we use the bosonized procedure, and the results

show that the fractional charge remains when the quantum dynamics of the soliton is included. We find

that the fractional charge shows up at diA'erent values of the coupling constant from those at which the

symmetry breaking of the initial bosonic field appears, and then the theory looks as if there were two

phase transitions.

PACS numbers: 11.10.Lm, 03.65.—w

The fractionization of the fermionic number has
played an important role in physics. Among its most im-

portant applications are the baryon number of the skyr-
mion, the catalysis action of the of 'tHooft-Polyakov
monopoles, and the explanation of the anomalous states
of polyacetylene found in the laboratories: The charged
soliton has spin 0 while the neutral soliton exibits spin

I
2 ~

From a theoretical point of view, the appearance of
states with a fractional fermionic number' (that happens
when, because of the fermion-soliton interactions, the re-
sulting quantum states carry fermionic quantum num-

bers which can have fractional or even irrational values)
is related to other effects such as the quantum Hall
effect and the existence of anomalies (that is, the full

set of the classical symmetries cannot be preserved in

any of the many possible quantization schemes). All of
these phenomena have a common origin: the existence
of normalizable zero-energy modes of the Dirac elliptic
operator [irl —@(x)]. From a mostly physical point of
view, these effects are due to the nontrivial and nonlocal
deformations of the fermionic Dirac sea, made by the
boundary conditions that we must impose on the physical
states of the domain of definition of the Hamiltonian in

order to have a well defined Hermitian operator.
In this work we resort to Monte Carlo simulations to

study how the quantum fluctuations of the bosonic field

affect the well known results obtained without including
the quantum dynamics of the soliton, because, although
there are topological reasons which could preserve the
charge fractionization, it is not clear whether the eff'ect

could change or even disappear when the quantum Auc-

tuations around the soliton are taken into account.
We start with an Euclidian Lagrangian in 1+1 di-

mensions defined as

LE=J dx [ ——,
' (8„&8"&)+—,

' m &

,' Xe4+ y(—iir+ge) y] . (1)

In order to avoid the problem of fermion doubling,

lip'kl/I =
2 (tlpo')

yy" y=~

yy-(cos(po ),
iyysy =(sin(po),

(2a)

(2b)

(2c)

(2d)

where p=2z' and g represents a scale parameter.
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FIG. 1. R as a function of J when @ is antiperiodic in the x
direction and G=l. Open circles stand for a 8x8 lattice.
Filled circles stand for a 16x 16 lattice.

which could mask the charge fractionization, we employ
the bosonization procedure, which in 1+1 dimensions is
implemented through the well known relations
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P (I/V)g(4(n)), (4a)

R (I/V)g(@ (n)), (4b)

S = (1/V) g(a'(n)),
n

g =(I/T)g(y'(n) y(n))
n

g, =(I/V)g(y(n) y(n))

(4c)

(sa)

= (I/V)g(cos[Pcr(n)]), (sb)
n

where T represents the size of the lattice in the time
direction and V=TL represents the volume; moreover
we take K=(L/2) —1 in order to minimize the bound-
ary eÃect.

The Monte Carlo simulation is made by use of the
Metropolis algorithm in 8x8, 16x16, and 32x32 lat-
tices. For the bosonic fields we use 2000 discretized
values and we have controlled that R'~ and S'~ are al-
ways much smaller than the maximum of our discretized
field.

For the a and @ fields, we have imposed periodic
boundary conditions in the time direction, and we work
with either periodic or antiperiodic boundary conditions
in the spatial direction. We have checked that the nu-
merical results for Q are independent of the spatial
boundary conditions used for the field o when we work
on a 16 lattice. When the p field is antiperiodic in the
spatial direction and we are in the broken phase, the typ-
ical configuration is a kink. In this case, the center of
the kink can travel through the lattice, and because the
charge is localized in the region around the center of the
kink [where the (a(n)) changes], in order to eliminate
asymmetry efI'ects, it is convenient to center the kink. To
do that, every time we want to apply the measure pro-
cedure, using the fact that the theory is translationally

Thus in this representation the action is

S=Jg&(n)C&(n+p) —Ag[@ (n) —1] —+[4 (n)
n, p n n

where we have rescaled the variable 4(n) to J'~ 4(n)
and we use the standard notation: p is a unitary vector
in the p positive direction ((u =0, 1), and n E Z labels
the site. The zero direction is the time.

The model exhibits a discrete global symmetry @
—4, cr a+ —,

' n'~ which can be spontaneously bro-

ken. Being interested in the phase diagram, and espe-
cially in the emergence of quantum fractional charge, we

compute the observables

+2a (n)]+pa(n)a(n+ p) —GQN(n) cos[Pa(n)],
n, p

(3)

invariant, we move the entire @ configuration in the x
direction through the lattice, fixing the origin with the
criterion that P be minimum, and then we thermalize the
cr field again.

For the constant-coupling values we fix A and G
(A =0.1, 6 =1, 0.2S, 0.1), and J varies between 0.1 and
2. Once the system is thermalized, 5000 iterations are
done, measuring every 20 sweeps.

The exact treatment of the problem makes possible a
good control of errors, and the results of the 8 versus
16 lattice show that the finite-size eN'ects are small. In
order to control our numerical results, we have checked
them with those of a semiclassical strong- and weak-
coupling expansion in the regions of small and large J,
respectively. The naive classical limit of this model has a
potential V(@) with only one minimum for J( —,

' —A

and a potential with two minima for J & —,
' —A. In the

J 0 region, we can expand the kinetic term in the ex-
ponential of S (3), and to second order in J we obtain

R=[p ]+J [p l[p ]+O(G),

where

(6)

(7)

in good agreement with the Monte Carlo results for
J&( —' —A.

In the large-J region, the dominant configuration for
periodic boundary conditions in the x direction for the
fields 4 and o is the solution of the equations

2A@p —(2J+2A —1)@p—(G/2) cos(Pap) =0, (9a)
—GP@psin(Pap) =0,

which gives

2A&p —(2J+2A —1)@p~G/2=0,

ap = (n/2) ~'

(9b)

(1ob)

where the sign + or —in (10a) corresponds to even or
odd in (10b). When the boundary conditions for the
field @ are antiperiodic (in the x direction) the value of
@0 is modified, and we have

which can be evaluated analytically as a quotient of par-
abolic cylindric functions. For A =0.1, we obtain

R =0.475+0.602J +O(G),

R=+p 1 —tanh —2+L 2A
2 J

i ]/2
L 2+ 2A

2 J
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with L the spatial size of the lattice and @p the solution
of (10a) in the periodic case. The agreement between R
from (8) for the periodic case and from (11) for the an-
tiperiodic case with the Monte Carlo results is excellent.

When the boundary conditions for @(n) are periodic,
the system has two phases and then P, as defined in (4a),
is a good order parameter. In this case, the fermionic
charge Q is zero in both phases, and Qs is zero only in
the unbroken phase.

In the case when we take antiperiodic boundary condi-
tions for the 4 field, Qs and P are zero in both phases
(since in the phase where the symmetry is broken we
have centered the kink before measuring). The values
for R (4b) in our Monte Carlo simulations (G=1) are
shown in Fig. 1; there, one can see that the corrections
due to the lattice size are not important when we go
from a 8 x 8 to a 16x 16 lattice and further, the existence
of a phase transition at values of J around 0.5; the na-
ture of this phase is second order. It should be noted
that in comparing the values of R obtained in this ver-
sion with those obtained using a discretized version of
(I ) with Kogut-Susskind fermions, one can see that
they are nearly equal for g z ', which gives the mass
scale in accordance to semiclassical results. Figure 2
shows R for different values of G and J varying between
0.1 and 2; there one sees that when G goes from 1 to 0.1,
the critical value of J (at which the breaking of the sym-
metry &~ —@ happens) changes slowly from 0.5 to
0.625.

The values of the fermionic charge Q for antiperiodic
boundary conditions in the x direction of the field @ are
shown in Fig. 3 for a 16X16 lattice, and for 6=1 and
0.25; we have suppressed the error bars to points since
they are always smaller than the dot limits. There it is
shown that for values of 6=1 and J less than 0.5, the
fermionic charge Q is zero; this is the expected result
since for those values of J the symmetry N —@ is not
broken. In this region the net charge of each of the dom-
inant configurations is small, and as a consequence, the
statistical errors are small. When G 1 and J &0.5, the
symmetry @ —@ is broken and the numerical results
show that Q takes values around ~ —,

' with very small
statistical errors; the sign of Q depends on the thermali-
zation process but it is stable when the system is already
thermalized. Then we conclude that for those values of
G and J, the fermionic charge keeps its "semiclassical"
fractional value & once the dynamics of the soliton is in-
cluded.

The numerical results for G=0.25 and J(0.6 or
J & 1 are similar to those described previously, but when
0.6 & J and J & 1 the result Q 0 is surprising since for
these values the symmetry @~—@ is broken. We have
checked that the dominant configurations are kinklike
(or antikink) with an extended and irregular center. At
first we could think that since we are working on a finite
lattice, a kink can pass through the border and become
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FIG. 2. R as a function of J when N is antiperiodic in the x
direction. Open circles stand for G=1. Filled circles stand for
G =0.1.
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FIG. 3. Fermionic charge on a 16X16 lattice (antiperiodic
4). Open circles stand for G 0.25. Filled circles stand for
G 1.
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I.6 timation of the width associated with the hypothetical cr

kink; for x )0 this solution would be

rr(x) =arctan[exp[(g
~
@

~ ) ' x)[ . (i2)
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FIG. 4. Fermionic charge on a 16x16 lattice (open circles)
and on a 32&32 lattice (filled circles) (antiperiodic 4).
G =0.1.

an antikink, which would give rise to cancellations and
could explain the result; however, this is not possible on
our simulation since we are always centering the
configuration before measuring. Keeping in mind that
we are on a 16x16 lattice, we conclude that there is a
range of J values where the system has a broken symme-
try with Q 0, which means that the theory has two
phase transitions. This is supported by the values of Q
shown in Fig. 4; in the region where G =0.1 and
0.625 & J & 2, the symmetry @ —@ is broken and the
fermionic charge is always compatible with zero, for
both the 16 and 32 lattice. In this situation we have
seen that with 1 & J & 1.8 the @ field presents the typical
kink profile with a width extended over one or two lattice
kinks. However, the o field does not exhibit the kink
form since the height of the associated potential (approx-
imately G(@)) takes a small value and then the quantum
fluctuations produce an important tunneling effect which
annihilates the hypothetical fractionization phenomenon.

On the other hand, the effect due to the lattice finite
size is not so important. In fact, when the @ field exhib-
its a sharp kink profile we can make a semiclassical es-

Looking for a fermionic charge measure with 10% of er-
ror we obtain the following condition:

3.7
I /2 (i3)

which provides us a value for L~ in the 6-10 range.
Then the effect associated to the finite size is not a fun-
damental factor to detect the fractionization phenome-
non in our lattice. The study of the finite-size effects as
well as a better characterization of the phases of the
theory, especially around the critical points, which is the
relevant region for the continuum limit, is in progress.

We are grateful to Nieves Perez and to Centro de
Calculo de la Universidad de Zaragoza for use of com-
puting facilities. This work was supported by the
Comision Asesora de Investigacion Cienttfica y Tecnica
(Plan Movilzador de Altas Energtas).

'R. Jackiw and C. Rebbi, Phys. Rev. D 13, 8398 (1979);
W. P. Su, J. S. Schrieffer, and A. Heeger, Phys. Rev. Lett. 42,
1698 (1979), and Phys. Rev. B 22, 2099 (1980); for a review,
see A. J. Niemi and G. W. Semenoff, Phys. Rep. 135, 99
(1986).

~K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.
45, 494 (1980); D. J. Thouless, M. Kohmoto, N. P.
Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

3J. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969);
S. Adler, Phys. Rev. 177, 47 (1969); M. F. Atiyah, V. K. Pato-
di, and I. M. Singer, Math. Proc. Cambridge Philos. Soc. 79,
107 (1976).

4R. Jackiw, Helv. Phys. Acta A 59, 835 (1986); J. Ambjdrn,
J. Greensite, and C. Peterson, Nucl. Phys. B221, 381 (1983).

sJ. G. Esteve, Phys. Rev. D 34, 674 (1986).
sL. Susskind, Phys. Rev. D 16, 3031 (1977); T. Banks,

J. Kogut, and L. Susskind, Phys. Rev. D 13, 1043 (1976).
7A. P. Polychronakos, Phys. Rev. D 35, 1417 (1987).

2415


