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An analytical solution for one-dimensional diffusion in a Gaussian random potential is presented. In
the long-time limit, the logarithm of the average population at the center, In({P)), grows as fast as 2,
disproving some former estimates that In({P)) increases at the rate of 2. Numerical simulations have

confirmed the theoretical solution.
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Diffusion in random media has attracted a great deal
of attention.! Zhang? and Ebeling and co-workers? re-
cently related the diffusion process of the equation

0P(x.1) _ ) 9°Plx.t)
at ax?

to the localization in quantum mechanics, and studied
the behavior of P(x,t) in individual potentials, where
V(x) has a Gaussian distribution, and D and X are con-
stants. In the long-time limit, they found that diffusion
in random media is related to hopping from one localized
center to another.

Physical quantities averaged over the random poten-
tials are of great importance in the study of random sys-
tems. This issue, which was not addressed by the above
authors, will be explored in detail in this Letter. If, for
example, Eq. (1) describes a biological model, P(x,t) dx
is the population of the bacteria at position x in region
dx at time ¢t. The average (P(x,t)) would provide an ex-
pectation value for experiments.

In a previous work by Zel’dovich et al.,* it was argued
that (P(x,t)), the average over a Gaussian random po-
tential, has the behavior

+AV(x)P(x,t) (1)
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where the angular brackets represent the average; o’
=([AV(x)]?), the variance of the potential which has
zero mean (V) =0. According to them, the above result
is not affected by the diffusion constant D, the initial
condition P(x,0), or the dimensionality. Their prediction
also says that the fluctuation® in P is even bigger than
the average (P(x,t)),

In{[P(x,t) —(P(x,£))]12)~205%2. 3)

Then it is difficult to check the above result by numerical
calculations.

This issue has recently received a lot of attention and
has become somewhat controversial. Contradictory con-
clusions have been obtained by different methods.>® It is
clear that an exact analytical result can shed light on the
problem. In order to clarify the issue, we shall investi-
gate the one-dimensional version of the above model and
present its analytical solution in this Letter. V(x) is

Gaussian, namely,
<V(X)>=0, <V(X1)V(X2))=5(X|“XQ). (4)

The initial condition is P(x,0) =8(x). In such a case,
the result of Zel’dovich et al. reads
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which is the same as obtained by Heinrichs and Kumar.®
Our analytical solution for this problem gives a dif-

ferent answer,
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which grows slower than the result in Eq. (5). Since the
growth rate of In(P) as 7 *? is first reported, extensive nu-
merical simulations have also been performed. As shown
in Fig. 1, the numerical results confirm the above solu-
tion quite well. It is easy to understand that when > 1,
(P(x,1)) is of the same order as (P(0,7)), if x <~/Dt. A
careful reexamination of the approach by Zel’dovich et
al. reveals that their original argument is flawed, i.e., Eq.
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FIG. 1. In{P(0,:))/ (A% ¥%//D) vs time t. The theoretical
curve is Vr/4—1nl2(xDt) 21/(A 2% ¥2/~/D). The lattice size is
2000, A =0.01, and D =0.1.
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(5) is invalid. In Fig. 2 the numerical results
In(P(0,1))/t?* are decreasing instead of tending to a con-
stant as t— oo, which implies that In{P(x,t)) cannot
grow as fast as 2.

The method’ employed here was developed by the
present author and Luttinger, a combination of Feynman
path integral® and replica trick.” Mathematically,
P(x,t) is the solution of Eq. (1). If P(x,t) grows faster
than the exponential growth,* its Laplace transform may
not be convergent. As a standard mathematical mea-
sure, we turn ¢ to the imaginary axis, ¢ =it. Then Eq.
(1) reads

. 2 .
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with the initial condition P(x,0) =6(x). The Fourier
transform of P(x,it), y(x,s) =f6’°e “istp(x,it)dr, sat- FIG. 2. The same numerical results plotted in In{P(0,
isfies the equation Hy(x,s) = —i5(x), where H = — DV? t))/(A%t%/2) vs time 1. As t increases, the curve decreases in-
—AV(x)+s. The solution is w(x,s)=—i(x|1/H|0).  steadof tending to a constant.

After using a path integral,” we write y(x,s) in the form

d 2

4,2 Vi(z) -

= ()
dz? + D D ’
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where ¢ =(¢,, . . . ,¢,) is an n-dimensional vector.
Equation (8) enables us to carry out the average over the potential ¥ in a simple manner. Denoting this average by
(y(x,s)), we have (y(x,s)) in the form

-2 . (" 2 s A2, o\ (
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where we have used the formula
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Following the same procedure as in Ref. 7, we get the solution for {y(x,s)),
2 ©o oo
(plx,s))=— BJ:) drj; drioo(r)eo(r)glr,r, x|, (1)
where g(r,ry,1) is a Green’s function, satisfying the equation
-Qg_— _l a_z_La 1 iz_‘xz 4 12
ot l 4[ar' ror r? p" “'opr |® 12)

and the boundary conditions g (r,r,,0) =r8(r —r); ¢ is the solution of the equation

d’¢0 _ 1 doo
dr? r dr

_1

LZ.*. %
4

D " 2p?

ir4]¢0=0, (13)

with the boundary conditions ¢o(0) =1, go(0) =0. The differential Eq. (13) can be solved exactly. Using u =r?/2, we
transform it to the form

d?¢o

T’ +4

s . A?
3+’57“]“’°=°’ (14)

which implies that ¢ is an Airy function. After taking the boundary conditions into account, we represent it in the
form

%
=1+ 1
do 1 Ds u R a1s)
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where H 1()2 is the Hankel function of the first kind.

As t— oo, (P(x,t)) should be little different from (P(0,)), if x is not too far from the center. We thus consider
(P(0,1)), which has a simpler analytical expression. From Eq. (11), at x =0, we have

2 ° 2 =
(W(O’S)>=—EJ; [¢o(r)]2rdr= "Bj; [¢0]2du . (16)
Here again u =r?/2. Differentiating Eq. (14) with s, we get
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Multiplying Eq. (17) by ¢o, Eq. (14) by 8¢40/ds, and subtracting and integrating over u, we find

1, d (900 _deode |7 __1 o |deo
W02 =5 [“’Odu ds ] du s }u-o 2 9 [ du uzo]’ (18

where we have used ¢(0) =1, ¢o(0) =0, d¢o(u)/ds|,=0=0, and d¢o(u)/ds|,=~=0 in the derivation. From Eq.
(15), we have

doo
du

REX:
D
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where Z(s) =s'2H{3[4(s>D) "?/3ix?]. (P(0,i7)) is then given by

) (19)
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The solution of (P(0,t)) is obtained by replacing it with .
Now let us examine the result of Eq. (20). As A— 0, from Eq. (19), y(0,s) = — (i/2V/sD ), which yields the exact

result for diffusion without a potential, P(0,1) =1/2(xDt)"2. A variable transform n=s(D/A*)"* in Eq. (20) con-
cludes that (P(0,¢)) must have the form

(P(0,0))=(/D)f (4D, 1)
where the function f is given by
: oo 2

fy) = —tf_mdn{fn—zln [nl/sz}a) [%nm] } J>eiy”. (22)

Using the formula for a Hankel function, 10

1/2 1
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we can expand f(iy) in the form
l oo
Sy 2(niy) 12 [IZ‘OCI v

Coefficients ¢; can be derived from Eq. (23). For example, co=1, ¢; =+/7/4, etc. Comparing these coefficients, we find
that as t— oo,

p

PO~ I (25)
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In order to further clarify the issue, we have reexamined the approach used by Zel'dovich er al. From Eq. (1),
P(x,t) can be expressed as

=1 (]
P(x,t)——Ajf[dx]exp{ L[E

where A is the normalization factor. The integration is over all paths between x(0) =0 and x(r) =x. The property of

0x

dr

2
+AV(x(r))]d1}, (26)
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V in Eq. (4) enables us to find the average
- f ‘1

04D
If there is no diffusion, i.e., D=0, only one path x(t)=0 connects two ends, x(0) =0 and x(z) =0; then (P(0,
t))— explr26(0)12/2], as t— . When D=0, diffusion makes a big difference. First, there is an infinite number of
possible paths now; x =0 is only one of them. Second, since the § function has a nonzero value only as its argument is
zero, x (1) =0 must be a singular path. Though it has the maximum value for the integrand, any deviation of dx(z)
from this path immediately gets zero from the & function. Therefore, it is invalid to expand the integral in Eq. (27)
around x(z)=0. The contribution to the integration from x=0 is negligible. Accordingly, (P(0,)) must be

<explr?:26(0)/2], then In(P(0,)) cannot increase faster than z2. If we assume that as t— oo, (P(0, ?))
— exp(A2agt™), and constants ag and n can be determined by

dx

2 2 t ot
ar dr+%ﬁ)J;dndrz&(x(rl)—x(rz)) . Q7

(P(x,t))= %f [dx]exp

agt" = 61n(P(§),t)> ' (28)
a(r?) 2 =0
Using the result
2
1 2] | ox 1 [x(£2) —x()]?

— | ldx] - — || dr|= —_——, 29

Af dlexp |~ J, 4D 61] 1} 202D (1, — 1)1 exp{ aD(1;—1)) (29)
we find that agt” is given by

2 1/2
t t !
12 (L | 8x — =Lz |

Om) 2 fan [ dn, [laxtexp | = f) o5 | & } de [5G ) —x(@) = | & | 12, (30)
which is the same as Eq. (25). |

A simple argument can further illustrate our result. of our result. In Fig. 2, as ¢ increases, the curve de-
From Eq. (1) (P) is effected by both diffusion and the creases instead of tending to a constant, which implies
environment A¥(x). At time ¢, the diffusion spreads the that In(P(0,¢)) must grow slower than ¢ at D=0.
population appreciably to the region | x| <2vDr. The I wish to thank A. Widom and I. Webman for many
length scale thus is vDt. Equation (27) reads useful discussions.

t t
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