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Exact Solution for Diffusion in a Random Potential
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An analytical solution for one-dimensional diffusion in a Gaussian random potential is presented. In
the long-time limit, the logarithm of the average population at the center, ln((P)), grows as fast as r 'i2,

disproving some former estimates that ln((P)) increases at the rate of t . Numerical simulations have

confirmed the theoretical solution.

PACS numbers: 05.40.+j, 05.70.Ln, 66.30.Lw

Diffusion in random media has attracted a great deal
of attention. ' Zhang and Ebeling and co-workers re-
cently related the diffusion process of the equation

8P(x r) D tl P(x r) i) V( )P( )
llx'

to the localization in quantum mechanics, and studied
the behavior of P(x, t) in individual potentials, where
V(x) has a Gaussian distribution, and D and X are con-
stants. In the long-time limit, they found that diffusion
in random media is related to hopping from one localized
center to another.

Physical quantities averaged over the random poten-
tials are of great importance in the study of random sys-
tems. This issue, which was not addressed by the above
authors, will be explored in detail in this Letter. If, for
example, Eq. (1) describes a biological model, P(x, t) dx
is the population of the bacteria at position x in region
dx at time t. The average (P(x, t)) would provide an ex-
pectation value for experiments.

In a previous work by Zel'dovich et al. , it was argued
that (P(x, t)), the average over a Gaussian random po-
tential, has the behavior

ln(P(x, r )) o'
(2)
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where the angular brackets represent the average; a
=([XV(x)] ), the variance of the potential which has
zero mean (V) =0. According to them, the above result
is not affected by the diffusion constant D, the initial
condition P(x,o), or the dimensionality. Their prediction
also says that the fluctuation in P is even bigger than
the average (P(x, t)),

Gaussian, namely,

(v(x)) -o, (v(x, )v(x, )) =a(x, —x,). (4)
The initial condition is P(x,o) =b(x). In such a case,
the result of Zel'dovich et al. reads

In(P(x, r ))
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which grows slower than the result in Eq. (5). Since the
growth rate of ln(P) as t / is first reported, extensive nu-

merical simulations have also been performed. As shown
in Fig. 1, the numerical results confirm the above solu-
tion quite well. It is easy to understand that when t »1,
(P(x, t)) is of the same order as (P(o, t)), if x (VDt. A
careful reexamination of the approach by Zel'dovich et
al. reveals that their original argument is flawed, i.e., Eq.
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which is the same as obtained by Heinrichs and Kumar.
Our analytical solution for this problem gives a dif-

ferent answer,

1/2
ln(P(O, r ))
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in([P(x, r ) —(P(x, r ))J ') -2a'r '. (3)

Then it is difficult to check the above result by numerical
calculations.

This issue has recently received a lot of attention and
has become somewhat controversial. Contradictory con-
clusions have been obtained by different methods. It is
clear that an exact analytical result can shed light on the
problem. In order to clarify the issue, we shall investi-
gate the one-dimensional version of the above model and
present its analytical solution in this Letter. V(x) is
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FIG. l. In(P(o, t))/(X r i /JD) vs time r The theoretical.
curve is Jz/4 —in[2(+Dr ) 'i I/(kri /JD ) The la. ttice size is.
2000, A, =0.01, and D =0.1.
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(5) is invalid. In Fig. 2 the numerical results

ln(P(0, t))/t are decreasing instead of tending to a con-
stant as t ~, which implies that ln(P(x, t)) cannot
grow as fast as t .

The method employed here was developed by the
present author and Luttinger, a combination of Feynman
path integral and replica trick. Mathematically,
P(x, t) is the solution of Eq. (1). If P(x, t) grows faster
than the exponential growth, its Laplace transform may
not be convergent. As a standard mathematical mea-

sure, we turn t to the imaginary axis, t =is. Then Eq.
(1) reads

. rlP(x ir) ri'P(x ir) ( ) ( .
)

8x
(7)

with the initial condition P(x,0) b(x). The Fourier
transform of P(x, ir), y(x, s) =fp e "'P(x,ir)dr, sat-
isfies the equation H(tr(x, s) = —ib(x), where H = —DV
—XV(x)+s. The solution is y(x, s) = i(x—

I 1/H IO).
After using a path integral, we write y(x, s) in the form
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FIG. 2. The same numerical results plotted in ln(P(0,

t)1/(X t /2) vs time t As. t increases, the curve decreases in-

stead of tending to a constant.
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where rp =(p~, . . . , y„) is an n-dimensional vector.
Equation (8) enables us to carry out the average over the potential V in a simple manner. Denoting this average by

(y(x, s)), we have (y(x,s)) in the form

h h oo s i)(~
(y(x, s)) = lim dip (0()&p ( ()xexp —i dz p ——y — (y )
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where we have used the formula
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Following the same procedure as in Ref. 7, we get the solution for (y(x, s)),
hoo h Oo

(y(x,s)) = —— dr dr((so(r)po(r()g(r r( I x I )
D4P 4P

where g(r, r(, t) is a Green's function, satisfying the equation
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and the boundary conditions g(r, r(,0) =rb(r —r(); (tip is the solution of the equation
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with the boundary conditions pp(0) =1, pp(~) =0. The differential Eq. (13) can be solved exactly. Using u r /2, we

transform it to the form

d'((o s+4 —+i u yp =0,
dg D D

(14)

which implies that pp is an Airy function. After taking the boundary conditions into account, we represent it in the

form

lk
Ipp= 1+ u
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where H~)J is the Hankel function of the first kind.

As t ~, (P(x, t)) should be little different from (P(0,t)), if x is not too far from the center. We thus consider

(P(0, t)), which has a simpler analytical expression. From Eq. (11),at x =0, we have
Q OO P OO

(y(0,s)) = —— leap(r)] 'r dr = —— [yo] 'du .a&0 D~o
Here again u r 2//2. Differentiating Eq. (14) with s, we get

d' &do s . k' lido 4+4 —+i u +—
Pp =0. (i7)
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Multiplying Eq. (17) by pp, Eq.

(it((0,s)) -—
yp
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where we have used pp(0) 1,
(15), we have

(14) by 8&p/Bs, and subtracting and integrating over u, we find

Q OO
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po( ) =0, 8po(u)/8s („-p=0, and 8&p(u)/Bs ~„- 0 in the derivation. From Eq.

Z'(s)
Z(s)

(P(0, ( r)) -—

(2i)

(i9)

where Z(s) -s '( H&g [4(s D) '( /3' ]. (P(0, ir)) is then given by

iX' '" 8 Z'(s)
4 D„ds
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The solution of (P(0,t)) is obtained by replacing iz with t.
Now let us examine the result of Eq. (20). As k 0, from Eq. (19), y(0,s) —(i/2JsD ), which yields the exact

result for diffusion without a potential, P(0, t) =1 2/( (Drt)' (. A variable transform (1 s(D/) )'( in Eq. (20) con-

cludes that (P(0,t)) must have the form

(P(0,t)) -(X/D) ( f(t(k /D) '"),
where the function f is given by

i " 8 4
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we can expand f(iy) in the form

Using the formula for a Hankel function, '

i 1/2
2
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2((riy)'(' (-o

Coefficients c( can be derived from Eq. (23). For example, cp= I, c~ Jx/4, etc. Comparing these coefficients, we find

that as t

1 Jz x'
(P(o,t))- exp t

2((rDT) '( 4 Jg)
(25)

in order to further clarify the issue, we have reexamined the approach used by Zel'dovich et al. Froin Eq. (1),
P(x, t) can be expressed as

2
axP(x, t) =— [dx] exp +XV(x(r)) dr,A~ 4D 8r

(26)

where g is the normalization factor, The integration is over all paths between x(0) =0 and x(t) =x The property «
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V in Eq. (4) enables us to find the average
2

ax t f

(P(x, t)) =— [dx]exp di+ dr dr2b(x(rt) —x(r2))"o 4D t)r 2 ~p~p (27)

If there is no diffusion, i.e., D=0, only one path x(r)=—0 connects two ends, x(0) =0 and x(t) =0; then (P(0,
t)) exp[k 8(0)t /2], as t ~. When D~O, diffusion makes a big difference. First, there is an infinite number of
possible paths now; x —=0 is only one of them. Second, since the 6' function has a nonzero value only as its argument is
zero, x(r) =0 must be a singular path. Though it has the maximum value for the integrand, any deviation of dx(r)
from this path immediately gets zero from the 8 function. Therefore, it is invalid to expand the integral in Eq. (27)
around x(r)=0. The contribution to the integration from x=0 is negligible. Accordingly, (P(0,t)) must be
«exp[ t 8(0)/2], then ln(P(0, t)) cannot increase faster than t . If we assume that as t ~, (P(0, t))

exp(X aot"), and constants ao and n can be determined by

(28)

Using the result
' 2

ax[dx] exp —„, dr

we find that a pt" is given by

2 [trD (t 2
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which is the same as Eq. (25).
A simple argument can further illustrate our result.

From Eq. (1) (P) is effected by both diffusion and the
environment XV(x). At time t, the diffusion spreads the
population appreciably to the region tx t

~2v'Dt. The
length scale thus is & Dt. Equation (27) reads

I

(Pl =M exp —,
' k „(V(x(rt))V(x(r2)))drtdrq

where M„denotes averaging over all paths. From a scal-
ing argument, ln(P) should have the form At/L wher. e
L has the dimensions of length. Then, I. must have the
order of JDt, and hence 1n(P)-k t 3i /MD.

Extensive numerical simulations have also been per-
formed. Averaging over the whole sample space is be-
yond the ability of our computer. To ensure a reliable
result, we first perform a numerical simulation of Eq. (1)
with D 0 and determine the number of samples neces-
sary to produce a result which is consistent with the
theoretical one, i.e., ln(P)-t . Then we use the same
number of samples in the simulation of Eq. (1) with
D&0. It can be seen in Fig. 1 that the numerical result
compares quite well with the theoretical solution. At
D&0, as t varies from 0 to 4000, for example, (P(0,t))
increases from 1 to the order of 10', but ln(P(0,
t)1/(A. t /JD) tends to a constant, —Jn/4. The num-
ber of samples in a simulation increases with t from
several hundred to more than one thousand. We have
carried out simulations with diff'erent parameters. All of
them give the same behavior as our analytical solution.
Fluctuations do not cause any problem in the verification

t of our result. In Fig. 2, as t increases, the curve de-
creases instead of tending to a constant, which implies
that ln(P(0, t)) must grow slower than t z at De0.

I wish to thank A. Widom and I. Webman for many
useful discussions.
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