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Asymptotic Behavior of Densities in Dim'usion-Dominated Annihilation Reactions
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We obtain rigorous bounds on the long-time behavior of the densities pg (t) and ptt(t) of species 2 and
8, which diffuse and annihilate upon meeting, i.e., 2+8 inert. For equal initial densities pA(0)
=ptt(0), the density goes to zero asymptotically as t t for dimensions d& 4 and as t ' for d~4.
When p~(0) & ptt(0), pg(t)-exp( —Xt Jt ), p~(t)-exp( —X2t/lnt) for d= 1,2, respectively, and
pg(t)-exp( Xqt—) for d~ 3.

PACS numbers: 05.20.—y, 82.20.—w

There has been much interest in recent years following
the seminal papers by Ovchinikov and Zeldovich' and by
Toussaint and Wilczek, 2 in the time evolution of the den-
sity of chemically reacting species whose long-time be-
havior is dominated by diffusive fluctuations. A typical
example is the case of two species, A and 8, which
diffuse independently and react, "when they meet, " to
form an inert species: A+8 inert. The question of
interest is the asymptotic behavior of the densities pz(t)
and pit(t) given some initial uniform densities p~(0) and

ptt(0). If we neglect the diffusive fluctuations, i.e., as-
sume that the reactants are stirred rapidly, then the law
of mass action applies,

dpi' (t) dptt (t)
dt dt

pA t pB

The solution of (1) gives an exponential decay of the
concentration of the minority component, say A, for
p~(0) & pit(0), and a power-law decay p~(t) =ptt(t)
-c/t for equal initial concentrations. We shall refer to
the above behavior, which is independent of the space di-
mension d in which the reaction takes place, as mean-
field behavior. It is intuitively clear that when there is
no stirring and the atoms have to find each other by
diff'usion, the decay of the densities may be slower since
there will be a tendency for longer persistence of parti-
cles in spatial regions created by fluctuations in which ei-
ther the A or 8 species dominates.

Other systems of interest are the one-species models of
particles which coalesce, i.e., A+A A, or combine to
form something inert, i.e., A+A inert. In mean-field
theory, the density p(t) in both cases satisfies the equa-
tion dp(t)/dt —kp(t), which leads to the behavior
p(t)-c/t. The question again is what happens when

particles have to diffuse in order to meet.
As already mentioned, there is much literature on this

topic. Unfortunately, the answers given in that literature
do not always agree. This is particularly so in the binary
(two-species) case, with p~ (0) & ptt (0). It therefore

seems useful to obtain and present some mathematically
exact results. This is what we do here. We also note
briefly some old results which are often rediscovered or
gotten plain wrong in the physics literature.

There are various microscopic versions of the above
systems. The particles can move continuously or be re-
stricted to lattice sites, the reaction can take place with
varying probabilities depending on the distance between
the particles, etc. All these variations should be (and in
some cases can be proven to be) irrelevant for the long-
time behavior of the concentrations.

The models we shall consider here will consist of parti-
cles on the d-dimensional cubic lattice Z . At t =0, the
state of the system is described by the following
translation-invariant product measure: At each site the
numbers of particles of each species have Poisson distri-
butions with means p~ (0) and ptt(0) for the binary mod-
el (case I), and p(0) for the one-component model (case
II). The results do not change if we consider an initial
product measure where at t =0 each site is occupied by
at most one particle with probabilities pg(0) and pit(0)
corresponding to types A and 8, respectively.

The time evolution of the systems proceeds via a com-
bination of diffusion and reaction dynamics. For t &0,
each particle performs an independent random walk in

continuous time with unit jump rate. The reaction dy-
namics in case I is specified by the rule that when an A
and 8 meet, i.e., they are at the same site at t & 0, they
combine and annihilate. Thus for t &0, each site will
contain only A's or 8's or be empty. For case II we shall
consider the model with coalescence —for t &0 all (A)
particles at a site become one without any subsequent
change in their jump rates. These results hold without
change for the corresponding one-component annihilat-
ing case. Finally, we shall also consider case I' in which
the 8 particles are fixed. That is, 8 particles neither
move nor are annihilated upon being met by A particles.
(The A particles disappear, however. ) In case I', the 8
particles are thus traps for the A particles.
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In the next section we present our new results on the
asymptotic behavior of the densities pz(t) and pz(t) for
case I and some old results of Bramson and Griffeath
for case II and of Donsker and Varadhan for case I'.

We begin with case I which has two subcases
p~(0) =pe(0) and p~(0) & pe(0). The next two theo-
rems give upper and lower bounds on the expected densi-
ties p~ (t ) and pe (t) for these cases.

Theorem 1.—Suppose p~ (0) pe(0). There exist
positive constants cd and Cd such that

cd/t "~p~(t) =ptt(t) ~Cd/t ', d~4,
cd/t ~ p~(t) ptt(t) & Cd/t, d ~ 4.

(2)

(3)

Theorem 2.—Suppose p~ (0) & pe(0). Let y pa—p~ (which is independent of t). There exist constants
cd, Cd, Xd, and Ad such that

pg (t) ~ C( exp[ Ad ygd
—(t)),

where

(4)

d 1,

gd(t) - ' t/lnt, d =2,
d~3.

(5)

p(t) = [mdgd(t)] (7)

Here m ~

-J~, m q
=z, and md for d ~ 3 is the probabili-

ty that two random walkers, starting at adjacent sites in

Z, will eventually meet; p(t) =f(t) here means that
p(t)/f(t)~ 1 as t~ ~. The constants in (7) are sharp
and are really independent of the initial density. The re-
sult for the annihilating case A+A inert is obtained
from (7) by our dividing the right-hand side by two, i.e.,
the asymptotic densities in this case are just one-half of
those in the coalescing case.

Here we attempt to give a flavor of the arguments
entering the proofs of some of the bounds in theorems 1

and 2. Complete proofs will be published elsewhere.
We begin with the lower bound in Eq. (2). The idea

here is to compare (couple) the actual process involving

Note that Eqs. (2)-(5) describe the (suitably defined)
asymptotic density of pp(t). Of course, pe(t) y as
t ~. The case p~(0) & pe(0) can be contrasted with

case I' where the 8's are fixed. In that case the Dons-
ker-Varadhan theorem shows that the density of A par-
ticles, denoted by pq (t), satisfies

pg (t) -exp( —
Zd td/~+'),

for all d (- here means that upon replacing A, d by Xd
+ e, one obtains upper and lower bounds). The reason
for the difference will be discussed below.

For case II there is only one type of particle; these
particles coalesce with one another. We quote the re-
sults of Bramson and Griffeath for the density p(t)
starting from all sites occupied:

diffusion and annihilation with another process in which
the particles only diffuse independently, i.e., the reaction
is turned off. Let g(t) and rt(t) denote the config-
urations of the particles on the lattice at time t for these
processes D. efine now 2)~(t;g) and Sg(t:rt) to be (No.
of A particles) —(No. of 8 particles) for the processes g
and rt present at time t in a cube of side R (denoted by
DR) centered at the origin. It is then not difficult to
show that starting from the same initial Poisson distribu-
tion for both processes (which is, in fact, a stationary
measure for the independent diffusion process rt)

& I &tt «;0) —&tt (0;0) I & ~ & I &tt «;n) —&R(0;n) I &

R (d —I)/2t I/4 (g)

&
I &R«:() I & & &

I &R(0;4) I &
—

& I &~«:4) —&~(0;g) I &

~ Cd[p~(0)j'/'R /'

( ~ (d —1)/2] 1/4 (9)

The bound on ( I 2)R(0;g) I) comes from the assumption
that the initial distribution is independent at each site.
Now choose R at time t to be R, =aJt. For a large
enough, we have the right-hand side of (9) bounded
below by bRP for some b) 0. By symmetry, the ex-
pected density of A particles, p~ (t), is bounded below by
—,
' R, ( I Stt, (t:g) I ). If we plug in the bound for

2)tt, (t;g) and substitute for R„ the proof of the inequali-
ty on the right-hand side of (2) is complete.

The lower bound in (3) ought to be fairly obvious on
an intuitive level because of mean-field reasoning or any
of a number of other comparisons (for instance, by anti-
cipated negative correlations between unlike particles at
neighboring sites or by comparison with the model
A+A inert). We have been able to show this bound,
but only by less direct reasoning. The reader is invited
to come up with his or her own simple (but rigorous) ar-
gument!

The upper bounds for (2) and (3) can be derived to-

The first inequality in (8) is proven for any initial
configuration g(0) rt(0) by construction of a sequence
of processes intermediate between g and r1 where the rule
A +8 inert (which is the same as having the pair A, 8
glued together after they meet) is successively changed
to A and 8 going their independent ways after meeting
at more and more sites. At each step, this comparison
increases the fluctuations of (No. of A) —(No. of 8) in
the cube Dtt. The second inequality follows from the ob-
servations that (1) any change in Stt(t;rI) comes from
particles crossing the surface of Dg, which has area
2dR ', (2) these particles will generally start within a
distance of order Jt from the surface, and therefore that
(3) for the independent processes rt, the expected abso-
lute value of net crossing of A's minus that of 8's by
time t has in the equal density case a bound proportional
to the square root of 2dR ' Jt We now. observe that
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gether. A substantial amount of work is required here.
One creates a mechanism that enables one to show that
no matter what the configuration of particle types is at a
given time, there is enough mixing occurring so that at
future times the particles have been redistributed and
their densities have decreased correspondingly. This
reasoning involves ordinary-differential-equation-like
comparisons; it has already been applied in a simpler for-
mat to case II.

We now discuss theorem 2, where y=ptt(0) —p~(0)
& 0. In Ref. 1, and in some papers in Ref. 3, the asymp-
totic behavior for the model was equated with that of
case I' as in (6). To see why one should instead expect
faster decay than for case I', consider the following
rough estimates in d = l.

In the Donsker-Varadhan case, an A particle starting
at 0 will not meet any of the stationary 8 particles by
time t if both (1) the A particle does not leave the inter-
val [ L,L] b—y time t and (2) there are no 8 particles in

[ L,L], for—some L & 0. The probability of (2) is clear-
ly bounded below by exp( —ayL) for some a & 0. Simi-
larly, the probability that the A particle does not leave
this interval during the time [O, t] with 1 =L is also
bounded below by exp( —bL), b &0. (This can be seen

by our dividing t into L pieces, each of duration r =L .
The probability of both not leaving the interval [ L,L]—
during the time period r and ending up inside [——, L,
—, L] is some constant p&0. The desired probability is

therefore at least p .) Multiplying the two bounds, we

see that the probability of this A particle not being
trapped by time t is at least exp( —X&t

'~ ), with

X) =a+b
The situation is entirely different when the 8 particles

also move as in case I. First, note that the typical dis-

tance a 8 particles moves in time t is Jt. Also, it is easy
to show (with standard large-deviation estimates) that
the probability that there are initially at least yJt more
8 particles than A particles on the interval [ Jt,Jt ] is-
at least 1 —exp( —AyJt), A&0. The probability that
none of these "surplus" 8 particles ever hits the A parti-
cle starting at 0 will consequently be at most

exp( A'yet), A'&0—, except on a set of probability
exp( Ay Jt ). Addit—ion of these two probabilities gives

the bound exp( —
At@Jt ), At =min(A, A'), which corre-

sponds to the upper bound in (4). This of course differs
from the lower bound for case I' that we just derived.

One can also argue heuristically to obtain (5) and (6)
in theorem 2. The lower bounds are easy to motivate in

all cases, even if we neglect the disappearance of 8 parti-
cles which meet A particles. Up to bounded multiples,
the term gd (r ), in (5) and (7), is the number of sites typ-
ically visited by an unbiased random walker in d dimen-
sions. Since each site is occupied by a 8 particle with

probability at most 1 —exp[ —pg(0)], the probability of
an A particle not meeting any 8 particle up to time t is
at least of order exp[ —p~(0)gd(t)]. This gives the

heuristics for the lower bounds in theorem 2.
One must work harder for the upper bounds, although

these bounds are again based on gd(t). The basic idea is
the following. The density 8 particles which "survive
forever" will be y. These particles will, after nearly all
the A particles have disappeared, move about indepen-
dently and therefore be fairly evenly distributed with

density y. Now consider one of the few surviving A par-
ticles after some time. The average number of 8 parti-
cles which will attempt to occupy its site grows at least
as a multiple of gd(t) as t increases. The near indepen-
dence of the 8 particles then implies that the survival

probability of the A particles decreases exponentially in

gd (&).
We note here the obvious, namely, that there are all

sorts of related models and variations of 8+8 inert
about which one can ask questions. For instance, what is

the asymptotic behavior of pz(t) for 2+8 inert with

p~(0) =pg(0) as in theorem 1 but with 8 particles sta-
tionary? One can introduce the model with n types
A~, . . . , A„which satisfy A;+A~ inert for i~j; the
model reduces to case I for n =2. Avraham and Redner
have derived an interesting formula for p~, (r) under

p~, (0) = =p~ (0). One can also ask more detailed
questions concerning the local structure of processes.
For instance, for 2+8 inert one apparently has more
clustering in low dimensions than in high dimensions
with A particles or with 8 particles dominating local
areas. This type of question becomes particularly in-

teresting when particles are introduced into the system
(e.g. , at a steady rate) to compensate for the depletion
which is continually occurring, say, in the model
2+8 inert. It seems ' that 1=2 is a critical di-

mension in the sense that for d ( 2 (including the Sier-
pinski gasket in d=2) local clustering becomes more
and more pronounced as t ~, whereas for d & 2 it
does not.
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