Comment on "Exact Critical Behavior of a Random-Bond Two-Dimensional Ising Model"

In a recent Letter¹ Shankar has computed the ensemble average of the square of the spin-correlation function for the critical 2D Ising model with quenched disorder using bosonization. In the penultimate paragraph, Shankar points out that he finds self-averaging of all *even* moments to leading order as $R \rightarrow \infty$, i.e., for N = even

$$\langle \langle s(\mathbf{0})s(\mathbf{R}) \rangle^{N} \rangle_{Av} \sim \langle \langle s(\mathbf{0})s(\mathbf{R}) \rangle^{2} \rangle_{Av}^{N/2}$$
$$\sim R^{-N/4} (\ln R)^{N/8}, \qquad (1)$$

suggesting sample independence of the correlation function asymptotically. On the basis of this result, he argues that the first moment be given by (1) with N=1.

I point out in this Comment that I have computed² all moments of the random spin-correlation function at the transition to leading order using a different method, developed in Ref. 3. I obtain

$$\langle\langle s(\mathbf{0})s(\mathbf{R})\rangle^N \rangle_{\mathrm{Av}} \sim R^{-N/4} (\ln R)^{N(N-1)/8}, \qquad (2)$$
$$RN = 1, 2, 3, \dots,$$

which leads to a physical picture very different from Shankar's (see below).

My calculation is exact in the same sense as Shankar's: in both the leading behavior as $R \rightarrow \infty$ is determined exactly by a one-loop renormalization-group calculation. Both disagree with Ref. 4.

My result satisfies the necessary inequalities, e.g.,

$$\langle\langle s(\mathbf{0})s(\mathbf{R})\rangle^{2N}\rangle_{Av} \geq \langle\langle s(\mathbf{0})s(\mathbf{R})\rangle^{N}\rangle_{Av}^{2}.$$
 (3)

I predict pure behavior for the first moment [N=1] in Eq. (2)] in disagreement with Shankar's prediction. My result also disagrees with Shankar's predictions for the higher moments in that it exhibits *non-self-averaging*. I have noticed⁵ that the origin of this discrepancy lies in an error in Shankar's calculation of the moments with even N > 2 in which he has omitted the contribution of the term

$$(g^2/2)\sum_{i\neq j}^{N/2}\cos(2\pi^{1/2}\phi_i)\cos(2\pi^{1/2}\phi_j)$$

[Eq. (21) of Ref. 1]. I have recovered⁵ my result for the even moments using the bosonization approach as well. For N=2, Eqs. (1) and (2) agree since this term does not exist.

Physical interpretation: Since the correlation function $G = \langle s(\mathbf{r})s(\mathbf{r}+\mathbf{R})\rangle_{J_{ij}}$ is not extensive as $R \to \infty$, sample-to-sample fluctuations are not expected to vanish as $R \to \infty$ [in fact,

$$(\langle G^2 \rangle_{Av} - \langle G \rangle_{Av}^2) / \langle G \rangle_{Av}^2 \sim (\ln R)^{1/4} \rightarrow \infty$$

Eq. (3)]. In order to obtain the behavior of G as $R \rightarrow \infty$

for a typical sample of bonds, one should average $\ln G$ which I sketch now (see Ref. 2): Define the probability distribution

$$P_R(G) = \mathcal{N}^{-1} \langle \delta(G - \langle s(\mathbf{r}) s(\mathbf{r} + \mathbf{R}) \rangle_{J_{ii}} \rangle_{Av}, \qquad (4)$$

which samples the correlation at fixed R. The Nth moment [Eq. (3)] is then given by $\langle G^N \rangle_{Av}(R)$ = $\int G^N P_R(G) dG$, also for $N \neq$ integer, and varies smoothly with N. One can therefore expect the continuation of Eq. (3) to N=0 to be safe. Differentiation at N=0 shows that $\ln G$ has a normal distribution with mean $-\frac{1}{4} \ln R - \frac{1}{8} \ln \ln R$ and variance $\frac{1}{4} \ln \ln R$. Hence G decays for a typical sample like

$$G_{\text{typ}}(R) = \langle s(\mathbf{r}) s(\mathbf{r} + \mathbf{R}) \rangle_{J_{ij}}$$

$$\xrightarrow{R \to \infty} e^{\langle \ln G \rangle_{Av}} \sim R^{-1/4} (\ln R)^{-1/8}. \quad (5)$$

The fluctuations of $\ln G$ about its average vanish as $\sim 1/(\ln \ln R)^{1/2}$ [more precisely,

$$P_R(G)dG = \tilde{P}_R(\alpha)d\alpha = \mathcal{N}^{-1}\exp\{-f(\alpha)\ln\ln R\},\$$

where $\alpha = -[\ln(GR^{1/4})]/\ln \ln R$, $f(\alpha) = 2(\alpha - \frac{1}{8})^2$ is universal, $\mathcal{N} = \text{normalization}]$.

To summarize, I have computed the statistics of the spin-correlation function G at the transition as the sample of bonds $\{J_{ij}\}$ fluctuates. It reflects the nonextensive nature of G. There are two physically relevant correlation functions in the random system: (i) For a typical fixed sample, G behaves like $G_{typ}(R)$ as of Eq. (5) as $R \rightarrow \infty$. (ii) The averaged correlation function, relevant for the susceptibility, is asymptotically equal to the pure one:

$$[G]_{Av}(R) \sim G_{pure}(R) \sim R^{-1/4} > G_{typ}(R)$$
.

The $\ln \ln \tau$ behavior of the specific heat was also recovered in Ref. 3.

Service de Physique Théorique de Saclay is a laboratoire de l'Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique.

Andreas W. W. Ludwig Service de Physique Théorique Centre d'Etudes Nucléaire de Saclay F-91191 Gif-sur-Yvette CEDEX, France

Received 1 April 1988 PACS numbers: 64.60.Cn, 05.50.+q

¹R. Shankar, Phys. Rev. Lett. 58, 2466 (1987).

- ²A. W. W. Ludwig, to be published.
- ³A. W. W. Ludwig, Nucl. Phys. **B285**, 97 (1987).

⁴V. S. Dotsenko and V. S. Dotsenko, Adv. Phys. **32**, 129 (1983).

⁵R. Shankar, private communication.