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Simple Model of Collective Transport with Phase Slippage
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We present a mean-field analysis of a many-body dynamical system which models charge-density-
wave transport in the presence of random pinning impurities. Phase slip between charge-density-wave
domains is modeled by a coupling term that is periodic in the phase diA'erences. When driven by an
external field, the system exhibits a first-order depinning transition, hysteresis, and switching between
pinned and sliding states, and a delayed onset of sliding near threshold.

PACS numbers: 71.45.Lr, 03.20.+i, 05.45.+b, 72. 15.Nj

Collective transport in coupled dynamical systems is a
topic of considerable current interest. ' An experimental
example is the nonlinear conduction seen in charge-
density-wave (CDW) samples. When a sufficiently
strong dc electric field is applied to a sample with a static
CDW, the CDW depins from impurities in the lattice
and begins to slide and carry current. Classical models
of CDW transport ' assume that the dynamics are
dominated by competition between the internal elasticity
of the CDW and the local potentials of randomly spaced
impurities.

These models of CDW transport do not account for
experimentally observed hysteresis, switching, and de-
layed conduction in "switching samples. "" ' CDW in-

ertia, ' current noise, ' and avalanche depinning ' have
been proposed to account for switching. More recently,
switching and hysteresis have been ascribed to phase
slippage in the CDW. ' ' A physical model for a CDW
in a switching sample is a collection of domains, each
with a well-defined phase, separated by regions where
the amplitude of the CDW is weak. ' ' Phase slip can
occur easily in these connecting regions. A rigorous
theory of CDW transport for this case is very difficult,
although a detailed analysis of a phenomenological mod-
el with a few degrees of freedom has been presented. '

It is also uncertain which of the observed complex phe-
nomena are intrinsic and which are properties of particu-
lar samples or experimental treatments.

In this Letter we present a simple model of collective
transport which is applicable to CDW transport in

switching samples. The model consists of many phases
which represent the states of CDW domains, and phase
slip due to amplitude collapse' is modeled by a weak-
coupling term periodic in the phase differences. This is a
simple modification of a well-understood model with
elastic coupling and no phase slip. As we will show, the
periodic coupling gives rise to switching, hysteresis, and
delayed conduction. Our approach is to analyze a simple

and we assume zero temperature and relaxational dy-
namics with a driving field

80
8J = — +Ep, j=i, . . . , N.

~J
(lb)

The 8, represent the phases of weakly coupled
domains, In other models, 8J represent the phase
distortion of the CDW at the jth pinning site. In Eq.
(1), J is the coupling strength, b is the pinning strength,
aj is a pinning phase randomly distributed on [—tr, tr],
and Eo is an electric field applied along the CDW wave
vector. The coupling term favors phase coherence,
whereas the random fields try to pin each 8~ at al. For
weakly coupled domains, the ratio E=J/b is small. The
infinite-range coupling in Eq. (1) corresponds to the
mean-field approximation, also used for previous
work

The model (1) is closely related to the system studied
by Fisher. The difference is that in the Hamiltonian
Eq. (la) we have assumed a periodic coupling 1 —cos(8;
—8j) rather than a quadratic coupling —,

' (8; —8J) .
The periodic coupling in Eq. (la) allows for phase-slip
processes "and corresponds physically to the effects of
CDW defects" or amplitude collapse' ' between
coherent regions of the CDW. In particular, the model
is appropriate in CDW systems with strong pinning
centers that favor the formation of weakly coupled

omains &2, 20 We have made the simplifying assumption
that the argument of the periodic coupling is the phase

model which may have some generality, rather than to
make a detailed phenomenological treatment specific to
charge-density waves.

The Hamiltonian is

H= g [1 —cos(8; —8l)]+bg [1 —cos(8~ —al)],J
l &J J

(la)
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Rewriting the sum in terms of the order parameter yields

sin(a, —8/)+Kr sin(p —8, ) =0.

We may set p =0 because there is no absolute phase
reference. This choice removes the rotational degenera-

cy. Solving Eq. (2) for 8~ yields

&/2

I'gj Kr+ e
e '=

, Kr+e
(3)

Combining Eq. (3) with r =N 'PJ exp(i8/) and letting
~, we obtain the self-consistency relation for r:

Kr+ cosar=
2 2 1/2~ (1 +2Kr cosa+ K r ) ' (4)

For each K, the values of r that satisfy Eq. (4) may be
found as follows [Fig. 1(a)]. Let u =Kr and let f(u)
denote the integral in Eq. (4), which may be expressed
exactly as an elliptic integral. ' Because f(u) and u/K
are both equal to r, the intersections of f(u) and the line

u/K yield solutions for the coherence r, given the nor-

malized coupling strength K [Fig. I (a)1.
Figure 1(b) shows the first-order transition between

incoherent and coherent states. The incoherent state

difference 8; —
8~ rather than a more general multiple

X(8; —8~), where X reflects the amount of polarization
that can be built up before phase slip occurs. Additional
metastable states' with diA'erent polarizations can exist
below the depinning threshold for X&1; these are not
present in our model.

We first consider the static configuration of the system
when ED=0. The phase coherence of the equilibrium
configurations depends on the normalized coupling
strength K. For instance, in the absence of coupling
(K=O), the 81 are pinned at aj and are completely in-

coherent, whereas for K ee, there is perfect coherence
(8; =8J for all i,j). To characterize the transition from
incoherence to coherence, we define a complex order pa-
rameter

re'~ N ' QJ exp(i8~),

where r measures the coherence and p is the average
phase.

We now show analytically that there is a first-order
transition in the model from the incoherent state (r =0)
to the coherent state (r = 1) at K =2, when the domains

are strongly coupled. This zero-field transition is an ar-
tifact of mean-field theory, but a related hysteretic tran-
sition occurs for nonzero Eo in the physically relevant
weak-coupling regime, as discussed below. The strategy
of the analysis is to derive a self-consistent equation for
r, by use of the fact that r determines the equilibrium

phases 8J and is in turn determined by them.
Equilibria of H satisfy 8H/88~ =0, i.e.,

sin(a/ —8, )+—+sin(8; —8, ) =0.K

U/K

0.5

0.0
0

0.0

FIG. 1. (a) Solid lines indicate the integral f(u) plotted
from Eq. (4) together with the line u/K (see text). Equilibri-
um solutions for r occur where f(u) intersects the line u/K.
For the value of K shown, three solutions exist (filled circles).
Dashed lines show u/K for the critical values K=K, and
K=2. (b) Plot of the exact equilibrium solutions for r vs K:
solid lines, locally stable equilibria; broken lines, unstable
equilibria.

r 0 always solves Eq (4). An unstable second branch
of the solutions bifurcates from r 0 at K=2, with
r-(2 K) '/ as can—be seen from Eq. (4) and the series
expansion f(u) =u/2+u /16+0(u ), valid for u (1.
We have also proven ' that r=0 is locally stable for
K&2 and unstable for K&2. A locally stable third
branch of solutions, with r = 1, is created when u/K in-
tersects f(u) tangentially [Fig. 1(a)l at K =K, = 1.489.
Note that for K between K, and 2, the system is bistable.
We emphasize that this first-order transition is a conse-
quence of the cosine coupling in Eq. (la) and would not
be seen if a quadratic coupling were assumed.

We turn now from statics to dynamics. In the pres-
ence of a driving field, the equations of motion from Eq.
(lb) are

d8&/dt =E+Kr sin (P —
8~ ) + sin (a~ —8/) . (5)

By letting E=Eo/b and time t bt, we have set b =1
without loss of generality; as before, K =J/b. The
second term on the right-hand side of Eq. (5) is the col-
lective torque exerted on 8~ by all other phases. For
E 0 and small K, the phase coherence r =0 and there-
fore the collective torque is zero. If r becomes nonzero,
the collective torque provides a positive feedback which
tries to increase r further by aligning each 8~ with the
average phase p. The physical consequences of this pro-
cess are hysteresis and delayed conduction, as discussed
below. In our model hysteresis and switching result from
the transition to coherence of a randomly pinned state.
Incoherence of the pinned state occurs naturally for a
large number of random pinning phases aj; systems as
small as three phases show hysteresis and switching, but
only when the a~- are chosen evenly spaced on [—ir, z].
Thus in our model these phenomena are associated with
many degrees of freedom.
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Figure 2 plots the regions of stability of the pinned
and sliding CDW states. The pinned state (d8, /dt =0)
in this model can be analytically shown to be incoherent
(r=0). Using variational stability analysis about the
pinned state, we have proven ' that this state becomes
unstable above the depinning threshold field Er =(1
—K / 4) 't when K & 2, as shown in Fig. 2. For strong
coupling, EC & 2 where the model is not physically
relevant, Er =0 and the CDW slides (dp/dt & 0) for any
fields E &0. This is an artifact of mean-field theory
which also occurs in models with elastic coupling.
Numerical solutions of Eq. (5) show that the sliding
state is always coherent (r &0). The sliding state be-
comes pinned and incoherent below a separate pinning
threshold Ep shown as the dashed line in Fig. 2, which
was calculated numerically from the initial condition
r 1. This boundary extends from the critical value K,
found analytically for E=O, also shown in Fig. 1. The
solid and dashed lines in Fig. 2 bound a hysteretic region
where both pinned and sliding solutions are stable; the
final state reached depends on the initial conditions. The
physically relevant weak-coupling region of Fig. 2 is for
K & K„where Et and Ep are nonzero.

The model predicts hysteresis and switching between
pinned and sliding states as illustrated by the numerical
solutions of Eq. (5) shown in Fig. 3. As E is increased
slowly past Er, the induced collective velocity dp/dt cor-
responding to the CDW current jumps up discontinuous-

ly, then increases nearly linearly. If E is then decreased,
the velocity dp/dt decreases and then drops discontinu-
ously to zero at the separate pinning threshold E Ep as
shown in Fig. 3. When the CDW pins, the coherence r
also drops discontinuously to zero. This loss of coher-
ence is illustrated in the limit Ep =0 for the analytical
results in Fig. 1(b). Hysteretic current-voltage curves

2.0

have been seen in low-temperature experiments on CDW
samples with dilute impurities or irradiation-induced de-
fects, which act as dilute, strong pinning sites. " ' The
switching and hysteresis predicted by the model depend
crucially on the periodic coupling in Eq. (1a); neither
switching nor hysteresis are predicted for quadratic cou-
pling.

The model exhibits delayed conduction above the de-
pinning threshold Ey when E & 1. Numerical solutions
of Eq. (5) were used to study the evolution of the system
from a random initial state. The system first rapidly
reaches an incoherent configuration with OJ = a~
+sin 'E, then gradually develops coherence, and finally
depins suddenly when r becomes appreciable. ' The de-
lay before depinning increases near the threshold E~, as
observed experimentally. "' If E & 1, switching occurs
immediately.

Numerical solutions of Eq. (5) show that the individu-
al phases do not move with a constant velocity in the
sliding state, although the collective velocity dp/dt is
constant. Near threshold, the motion of each phase is
periodic, alternating between rapid advances by nearly
2z, and slow creep about its pinning phase. In this
respect, Eq. (5) and other mean-field models agree
with results from more realistic short-range models, '

and with recent experiments' which suggest a spatial-
ly nonuniform rate of CDW phase advance near thresh-
old. An aritfact of the mean-field approximation is that
all the phases 8, execute identical periodic motions shift-
ed in time and phase.

We have also analyzed the dynamics of Eq. (5) far
above the depinning threshold. For E»E„perturbation
theory ' yields (dp/dt)/E =1 —(1/2E )+O(E ).
Thus, the deviation from the limiting dc conductivity as
E ~ is proportional to E "with n=2, in agreement
with some CDW models and in contrast to the value
n —,

' predicted by others. The available data for
high-field conductivity in CDW's suggest n = 1 —2.

Simplification of approximations in the model are
infinite sample size N and infinite-range coupling. Solu-
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FIG. 2. Stability diagram for the model Eq. (5): solid line.
depinning threshold Ez. = (1 —K2/4) 't determined analytical-
ly; dashed line, pinning threshold Ep obtained by numerical in-
tegration of Eq. (5). Note the presence of hysteretic region.

FIG. 3. Hysteresis and switching between pinned and slid-
ing states. Data points obtained for N =300 phases by numeri-
cal integration of Eq. (5) with K= I, for which Er =( —, ) 't .
The curve is a guide for the eye.
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tions of the infinite-range model are relatively insensitive
to N, and closely approximate the results presented here.
To assess the effects of infinite-range coupling, we have
numerically integrated Eq. (1) on a cubic lattice in three
dimensions with nearest-neighbor coupling. The numeri-
cal solutions show hysteresis and switching, ' though
over a reduced range in E. For N 216 and N=1000
sites, the width of the hysteresis is approximately 20%
and 15%, respectively, of the width predicted by the
infinite-range model for the same values of N. Thus the
qualitative behavior is similar to the mean-field theory,
at least for finite sample sizes, but the thresholds are
quantitatively different.

In summary, we have analyzed a dynamical system of
many driven phases with random pinning and infinite-
range coupling. The periodic coupling in the model gives
rise to a first-order depinning transition, hysteresis, and
switching between pinned and sliding states, and a time
delay before the onset of sliding. These results demon-
strate that some of the complex phenomena observed ex-
perirnentally in strongly pinned charge-density-wave sys-
tems can be accounted for by a simple dynamical model.
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