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Superconductivity and the Quantum Hard-Core Dimer Gas
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We discuss the short-range resonating-valence-bond system as realized by a quantum hard-core dimer
gas of arbitrary density on a two-dimensional square lattice. When the dimers completely cover the lat-
tice, we argue that there is a first-order transition from a dimer crystal to an insulating quantum liquid
state which possesses low-energy, neutral, spinless excitations which we call "resonons. " For less than
close-packed densities, the ground state is a superfluid. In addition to the usual Goldstone mode, there
are low-energy, spinless zone-boundary excitations.

PACS numbers: 75.10.Jm

We discuss the properties of a system with a short-

range resonating-valence-bond (RVB) ground state. In

a "valence-bond" state, electrons on nearby sites of a lat-
tice are spin paired to form singlet bonds, thereby lower-

ing their energy. A "resonating" valence-bond state' is

a coherent superposition of such singlet-bond states; its

energy is further lowered as a result of the matrix ele-
ments connecting the different valence-bond config-
urations. Heuristically, valence bonds can be viewed as
real-space Cooper pairs which repel one another, a joint
effect of the Pauli principle and the Coulomb interaction.
When there is one electron (i.e., half a valence bond) per
site, charge fiuctuations are suppressed, leading to an in-

sulating state. As electrons are removed by doping,
current can flow; the system becomes superconducting as
the valence bonds Bose condense. A complementary
but equivalent picture emerges if one focuses instead on

the sites not participating in a valence bond, dubbed
"holons. " We have argued that holons are spinless,
charge-e bosons, and that the superconducting RVB
state can be understood as a peculiar Bose condensate of
them. '

Two qualitatively different sorts of RVB states have
been proposed: the Princeton RVB state which has im-

portant contributions from valence bonds of all lengths
and consequently gapless spin excitations, and the
"short-range" RVB state, in which states with long
valence bonds have exponentially small amplitudes. This
state is believed to have a spin gap, based on its exponen-
tially decaying spin-spin correlations. We consider
here a prototype for the short-range RVB state in the
limit where the spin gap is large, so that the manifold of
low-energy states is spanned by the linearly independent
set of nearest-neighbor valence-bond states. (Indeed, it
has recently been shown that this set spans the ground-
state manifold of a frustrated spin- 2 Heisenberg mod-

el.)
Restricting the physical Hamiltonian to the nearest-

neighbor valence-bond subspace defines an effective

Hamiltonian for a quantum hard-core gas of charge-
( —2e) dimers. The usefulness of this interpretation de-
pends upon the assumption that this effective dimer
Hamiltonian is short ranged. We argue that this is in

fact the case despite the nonorthogonality of the
valence-bond states, as follows.

Let
~ tc) be the valence-bond state associated with di-

mer configuration C. We can formally define an ortho-
normal basis set

~
C& =pc (Scc ) '1

~ ec), where
Scc'=(ec I ec) is the overlap matrix. If H is the physi-
cal Hamiltonian, the effective dimer Hamiltonian P is

given by

+CC' Z (S )CDHDD'(+ )DD'c't
DD'

where HDD is (+D
~
H

~
+D). The overlap matrix is easily

comPuted7: 5'cc =2n(cc')x —L(cc') where x = IlJP, and
n(CC') and L(CC') are the number of nontrivial loops
and the net length of loop, respectively, in the "transition
graph" between C and C'. [The transition graph, Fig.
1(c), is constructed by drawing configurations C and C'

on the same lattice. On a bipartite lattice, the dimers
from configuration C can be drawn as arrows pointing
from one sublattice (which we will call "red") to the oth-
er ("black" ); those of configuration C' can be drawn in

the opposite sense, The transition graph then consists of
closed, nonintersecting, directed loops. When a dimer is
in the same position in both configurations, a trivial loop
is obtained. ]

Kohmoto and Shapir have argued that S can be in-

terpreted as the Boltzmann weight of a loop gas which is

deep in its high-temperature (small x) phase; we have
carried out an expansion of the effective dimer Hamil-
tonian in powers of x which appears to converge rapidly
even for x=1/J2. We conclude that orthogonality is
not an essential issue, and are led to consider the sim-
plest short-range model for dimers on a two-dimensional
square lattice. More generally, we consider this to be a
model of highly correlated real-space Cooper pairs.
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FIG. 1. (a) The "column state, " Cp, (b) a state C in the
same topological sector as Cp (the readers are encouraged to
convince themselves of this by explicitly determining a se-

quence of flips which take C into Cp); (c) the transition graph
of the dimer configurations C and Co, obtained by drawing
them both on the same lattice with dimers in C directed from
the "red" sublattice (open circles) to the "black" sublattice
(filled circles), and dimers in Cp directed oppositely; (d) a
valence-bond crystal (VBC) state.

There are natural generalizations to other lattices and
dimensions.

Summary of results and relation to oxide
superconductors. —In this paper, we establish the follow-

ing properties of the zero-temperature quantum dimer

gas. As the balance between dimer kinetic and potential
energies is varied, the close-packed dimer gas undergoes
a first-order transition from a dimer crystal [a spin-

Peiels or valence-bond crystal (VBC) phase] to a state
we have identified as a quantum dimer liquid (corre-
sponding to a short-range RVB state). This state has a
branch of neutral, low-energy excitations of the orienta-
tional degrees of freedom of the system, which we call
"resonons. " At the transition, the resonons are gap-
less, ' although in the liquid phase they may develop a

gap. Away from the close-packed density we show that
the ground state is a Bose condensate of dimers. At
nonzero doping, low-energy excitations (which are not
accompanied by long-wavelength charge fluctuations)
are found, with momenta near (z, z).

We believe this model may be relevant to the layered
perovskite superconductors. The presence of a spin gap
in the superconducting phase is suggested by tunneling
and infrared-absorption gap measurements, and by the
exponential temperature dependence observed in nuclear
magnetic relaxation; furthermore, the superconducting
state appears to exhibit very short-range magnetic corre-
lations. The mapping to the dimer problem requires only
short-range valence bonds or Cooper pairs, which are im-

plied by the observed short superconducting correlation
length. Our calculations apply only at temperatures less
than the spin gap; we speculate that this gap collapses at
T, in a manner qualitatively but not necessarily quanti-
tatively similar to that predicted by BCS theory.

The close-packed dimer gas: ground states. —Let us
consider quantum hard-core dimers on a square lattice.
The Hilbert space is spanned by the orthonormal states
[

~
C&], where C specifies a dimer configuration. For sim-

plicity, we study a model dimer Hamiltonian with only
the most local terms. We first address the close-packed
case:

Pdm«= g [—J(f II&& = f+H.c.)+V(t =&&= I+ I II&IIII)].
plaquettes

The first term is a pure dimer kinetic energy which

flips pairs of parallel nearest-neighbor dimers; the second
is a repulsion between such nearest-neighbor pairs. The
coupling constants J and V are to be regarded as phe-

nomenological parameters; making contact with the
large-U Hubbard model, we expect both J and V to be
comparable to the exchange energy J,„,h. The lowest-

order terms in the expansion in x yield J-2x J,„,h
J«,hj2, and V-4x J„,h=J„,t,/4. [Note that in the

close-packed case the sign of J is a matter of convection:
In particular, the sign of J can be changed by multiply-

ing each state in our basis set by a factor of i ', where

v(C) is the number of horizontal bonds in configuration
C. With the "fermionic" convention that a bond is

created by c;tcj~ +cgtc;~, J is negative. ]
The analysis of Pd; „is facilitated by classifying each

dimer configuration C according to the winding number
of its transition graph relative to a reference config-
uration Cp [which we take to be the "column state, "Fig.
1(a)]. On a two-torus there are two winding numbers

O„and Q~ which are given by the net number of loops

(clockwise minus counterclockwise) encircling the torus
in the x and y directions, respectively. Any two dimer
configurations with the same winding numbers can be
obtained from each other by repeated application of the
Hamiltonian; no local operator has matrix elements be-
tween states of different winding number. The winding
numbers therefore label the disconnected sectors of Hil-
bert space.

For close-packed dimers, there exist individual con-
figurations which comprise their own topologically dis-
tinct subspaces. These VBC configurations [Fig. 1(d)]
contain no parallel nearest-neighbor dimers, and are
zero-energy eigenstates of Pd; „for arbitrary J and V.
For V» J» 0, Pd; „is positive semidefinite, and these
VBC's are the only ground states; the other topological
sectors all have positive energies.

At V=J, each topological sector possesses a unique
zero-energy ground state

~
I), &, namely, the equal-

amplitude superposition gc« ~
C& of all configurations

in that sector. It is easy to verify that these states are
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zero-energy eigenstates of Pd; „Since all off-diagonal
matrix elements of the Hamiltonian Pd; „are nonposi-
tive, the ground state must be nodeless, i.e., a state vec-
tor with all positive amplitudes. The equal-amplitude
states are therefore the unique ground states in their
respective topological sectors. These coherent superposi-
tions are the precise analogs of the RVB originally dis-
cussed by Anderson' in 1973; the resonance energy is

simply the dimer kinetic energy. An important feature
of the equal-amplitude states discussed above is that any
dimer correlation function can be computed exactly from
the results of Fisher and Stephenson" for the classical
dimer problem. (This does not, however, imply that the
quantum problem is related to a two-dimensional classi-
cal problem, in the sense that if we perturb the quantum
Hamiltonian slightly the ground-state correlation func-
tions need not be derivable from any simple classical sta-
tistical mechanics problem. )

For V (J, we can use the equal-amplitude state as a
variational wave function, and obtain an upper bound to
the ground-state energy of E~ —

4 (J—V) per site.
Since E is identically zero for V~ J, the energy has a
discontinuous first derivative at V J, implying a first-
order transition from a VBC to a quantum liquid (RVB)
state. When V is negative, we expect another transition
to a different crystalline ground state, the "column
phase, " dominated by configurations like Cp [Fig. 1(a)].
While we have no proof that the RVB phase persists for
a nonzero range of V/J, we consider it likely.

The doped dimer gas: ground states Upon d.o—ping
(i.e., removing dimers), additional processes contribute
to the Hamiltonian:

/idimc:.
—t Z ( I

—
&(

—
I
+H.c.) + &~g I

&ijk& (.jr'/
(3)

The first sum, over triples of sites such that the first and
third are nearest neighbors of the second, is a "hole ki-

netic energy" which moves a dimer to an adjacent unoc-
cupied position. Note that a "red" hole remains on the
red sublattice and a "black" hole remains on the black
sublattice. The second sum, over nearest-neighbor sites,
is a "hole-hole repulsion, " which can be rewritten as a
local dimer-dimer interaction.

If we imagine obtaining /it from an underlying elec-
tronic model, t would be comparable to the electron
bandwidth, and Vq would be roughly the nearest-
neighbor Coulomb repulsion. Away from close packing,
if we choose a phase convention to make t positive, the
naive J due to exchange will be negative. In this paper
we consider the simple case of t and J positive.

The ground state of the dimer Hamiltonian (3) can be
determined exactly when J=V and Vp

—2t, for t and
J positive. For these parameters, the equal-amplitude
superposition gI C) of all dimer configurations can be
shown to be a nodeless eigenstate of R, and hence the
unique ground state. The energy of the equal-amplitude

superposition is —4t(N, +Nb), where N, and Nb are the
numbers of red and black holes, respectively. Note that
away from close packing there is only a single, topologi-
cally trivial sector, since any two configurations can be
connected by repeated application of the Hamiltonian.

The equal-amplitude states are similar to the ground
states of two interpenetrating free Bose gases. Their
phonon excitations have k dispersion, as described
below. At J V, Vt, & —2t, additional repulsive interac-
tions lead to a Bose condensate with linearly dispersing
Goldstone modes, as for an interacting Bose gas. If Vp, is
less than —2t (attractive interactions between holes) the
system phase separates. Away from close packing, the
equal-amplitude states possess off-diagonal long-range
order, i.e., (dtI,dtt, ) for IR —R'I ~ is bounded
from below by —,

' x (1 —x) (dtI, creates a dimer on the
link connecting sites R and R+r). When I VI » J, it
seems plausible that the ground state will be a "superso-
lid, " with both broken translational (i.e., VBC) and bro-
ken gauge symmetry. In such a state, the vacant sites
would be spatially paired.

Excitations of the dimer gas. —We discuss the excita-
tions about the RVB state by considering the excitations
of the equal-amplitude states in the single-mode approxi-
mation. ' This approximation describes excitations
about a ground state

I
G) in terms of variational wave

functions of the form

(4)

where y(R) is a local operator. [For example, if y(R)
is the density operator at R, I k) is a phonon. ] The vari-
ational energy of such a state (measured from the
ground state) can be succinctly expressed as coi, =f(k)/
s (k), where f(k) is the oscillator strength

2 ([+-i„[7f,eq]]), and s(k) is the static structure fac-
tor, i.e., the Fourier transform of the ground-state corre-
lation function (y(R) y(0)). If these quantities are eval-
uated in the exact ground state, they provide a rigorous
upper bound on the lowest excitations at momentum k.

In general, when y describes a conserved quantity and
the Hamiltonian is local and inversion symmetric, the os-
cillator strength varies as k for small momenta. This
property can be used, in conjunction with the single-
mode approximation to the bulk modulus |12E/aleq~
=limi, nf(k)/2s (k), to determine the small-
momentum behavior of s (k) and therefore the excitation
energy of the corresponding long-wavelength mode. For
example, a vanishing bulk modulus (e.g. , for a free Bose
gas) implies a dispersion which vanishes faster than k,
while a finite, nonzero bulk modulus yields a linear
dispersion (e.g. , for an interacting Bose gas).

These principles can be used to demonstrate gapless
excitations in the equal-amplitude doped dimer gas.
Away from close packing, we note that the Hamiltonian
(3) conserves both total hole number (since dimers are
neither created nor destroyed), and the total "topological
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charge, " the difference between the number of red and
black holes (since each dimer covers one red and one
black site). When the ground states are the equal-
amplitude states, the corresponding moduli tJ E/tJ(N,
+Nb ) and tJ E/tJ(N, Nb —) vanish. We conclude that
there exist two gapless modes, one a phonon and the oth-
er an oscillation involving the out-of-phase motion of red
and black holes, with momentum near Q=(tz, tz). If
s(Q+k) is analytic in k, these excitations have disper-
sions tok-tk . Introducing additional repulsions be-
tween holes leads to a linear dispersion for small momen-
ta, as in the interacting Bose gas. While the phonon
mode is expected to be shifted to the plasma frequency in

the presence of Coulomb interactions, no long-
wavelength charge fluctuations should accompany the
red-black mode, which would remain gapless at J V.
For

~
V~ )J, i.e., in the hypothesized supersolid phase,

it seems likely that this mode will develop a gap. We
speculate that a gap also develops for

~
J

~
&

~ V~; the
resulting state is then qualitatively similar to a BCS
state.

At close packing, the bulk modulus diverges and the
system becomes incompressible, indicating the transition
to an insulating state; the zone-center phonon mode de-
scribed above acquires a gap in its spectrum. Surprising-
ly, at V J, there remains a gapless branch of excitations
at (tz, tz); we suspect that for V & J this mode develops a
gap. We call these modes "resonons, " since they involve

the dephasing of dimer configurations which differ by
large loops in their transition graphs. The conserved
quantity in this case is the topological winding number
0, described above. The local operator y(R) used in

(4) to create such an excitation is given by p, (R)
e'~' "n,(R), where n, (R) is the dimer density operator

on site R for dimers pointing in the z direction. (There
are the two "polarizations, " for resonons, corresponding
to z along either the x or y axes. )

It is easy to verify that the oscillator strength for the
resonon is f(k) —J(kx z) . At V J, the resonon struc-
ture factor s(k) approaches a constant as k 0, corre-
sponding to the algebraic decay of dimer-dimer correla-
tions in the classical problem. " The resulting disperison
is -Jk . Resonons correspond to the Goldstone modes
of the gauge symmetry which allows the phases of
different topological sectors to be varied without chang-
ing the energy when J=V. Away from J=V, the struc-
ture factor cannot be computed from the classical case,
and the presence or absence of a resonon gap is unclear.

The dense ditrter gas as a dilute holon gas. —While it
is always possible to describe a dimer gas with dimer
coordinates, it is clearly preferable to have a quasiparti-
cle description in terms of holons for the nearly close-
packed regime. We have argued elsewhere that holons
are bosonic. In terms of dimers this is trivail, since ex-

changing holons moves the (bosonic) dimers around and
can lead to no sign change. (The dimers themselves con-
sist of pairs of electrons, and can be thought of as Coop-
er pairs of spinons. )

We believe that the holes behave as locally interacting
bosons except for the topological constraint that they can
only be created or destroyed in pairs. This constraint
prevents the appearance of an anomalous expectation
value for the creation of a single holon. Such an order
parameter for the creation of two holons can develop,
however, even if they are far apart. A spatially unpaired
distribution of holons is preferred, since it minimizes the
effect of the Coulomb interaction on the condensate.
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