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Processing of Temporal Sequences in Neural Networks
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We study three ways of processing of temporal sequences of patterns stored in a neural network; re-
trieval, counting, and recognition. These three processes are studied analytically in a strongly diluted
neural network. The results compare qualitatively to simulations in fully connected networks.

PACS numbers: 87.10.+e

The “standard” model of associative memory, 1.2 which
has attracted much attention in the last few years, con-
sists of a fully connected network of NV formal “neurons,”
represented by Ising spins S; (i=1,...,N). A setof p
uncorrelated patterns {4 G =1,... , N;u=1,...,p),
in which &F is either +1 or — 1 with equal probability, is
embedded in the interaction matrix, by the rule

ij=%§<§,“é}‘. 1)

These patterns are the “memories” stored in the net-
work. The retrieval of a particular memory is achieved
when the system starting from some initial configuration
(imposed by an external stimulus) evolves under its own
dynamics to a stationary configuration {S;}, which is
strongly correlated with that memory. A fair amount of
understanding of the properties of this model has been
achieved by analytical analysis supplemented by numeri-
cal simulations. >*

An important problem is to extend this model to net-
works which can associatively recall temporal sequences
of patterns. Such an extension was already discussed in
Refs. 1 and 2 and several proposals to achieve this goal
have been made since then.>™® Previous treatments of
sequences in networks with different architectures can be
found elsewhere. '%-12

Our discussion will be based on the model proposed in
Refs. 6 and 7. There are now two sets of interactions be-
tween the neurons. One is the Jjj of Eq. (1); its task is to
stabilize the stored patterns. The second set of interac-
tions, J, tends to induce transitions from one pattern to
the next in a temporal sequence y =1—2,...,—q:

Ju =_}‘_qil€y+l€y 2)
VTN e

This interaction acts with a certain time delay 7. The
dynamics is described by the time evolution of the over-
laps:

0 =%;z;,us,-(:), 3)

Ri() =A X (g # T +EPIDIS, L — D) +S,,( — D]

in terms of which the local field on spin i reads
P - qg—1 -
hi(t) =2 &S, (1) +xr X &rt1S, (1 — 7). (4)
n=I p=I1

The updating rule at finite temperature 7=1/8 is

S;(¢t+1)==1 with
probability (1+e T 2241y =1 (5)

One can distinguish between parallel dynamics, when all
spins are updated simultaneously at discrete time steps,
and sequential dynamics, when the spins are updated one
at a time in a random order. Delay functions more gen-
eral than (4) have been discussed in Ref. 6 and could be
used here as well. .

If the network has been in state v, namely S,=1, for a
time larger than 7, and if A is sufficiently large, then the
second term in (4) will cause a transition to state v+1.
Thus, such a network can retrieve a temporal sequence
in response to an external stimulus corresponding to the
first pattern in the sequence.

It has been suggested that such a network can be used
for the recognition of temporal sequences’ and for count-
ing the number of external signals, as for example
chimes.'3 This is possible if A is too small to induce a
spontaneous transition between two consecutive states
v— v+1. The transition takes place if, at the right
time, the system receives an external signal A; =hpert!
(recognition) or h; =h.n;, where n; is uncorrelated with
the stored patterns (counting).

One of us has proposed that the recognition of a se-
quence of external signals can be achieved, by the same
mechanism, in a network in which each state is connect-
ed to several possible successors.'* A simple realization
of such a scheme is a network with two sequences of
stored patterns {5,’"‘},{ 74} The transition term in the
local field is

(6)

Thus, if the system is in state (1,v), for example, it can go to either (1,v+1) or (2,v+1).
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The cross terms in Eq. (6) allow for the two transi-
tions. Which of them actually occurs will now be deter-
mined by the external signal, which is thereby recog-
nized. It has been shown'* by numerical simulations
that there exists a range of parameters where such a net-
work performs as a sequence recognizer, discriminating
between the 27 possible sequences of signals. The main
point is that the external signal is too weak to induce the
transitions by itself, so that recognition is a combined
effect of previous learning and external inputs. Other
schemes for recognition of temporal sequences have also
been proposed.® !

In the present paper we investigate the three modes of
processing temporal sequences mentioned: retrieval,
counting, and recognition.

The methods of Ref. 3 do not apply to nonsymmetric
interactions like (2). Therefore, in order to get analytic
results on the dynamics, we have studied a strongly dilut-
ed nonsymmetric version of the model. Such a version of
the standard model (A=0) has been introduced and
solved recently.'® This version does not necessarily rep-
resent a realistic network—it allows us to get an analyti-
cal understanding of the processes at work. It is known
in general that diluted networks behave qualitatively in
the same way as fully connected networks in the region
of good retrieval. To check that this is also the case in
the present application to sequences, we shall compare
the results with numerical simulations on fully connected
networks.

The interactions J;; are multiplied by random inde-
pendent parameters C;; which can take the value 1 with
probability ¢/ N and 0 with probability 1 —c¢/N, where ¢
is a finite number. Since C;; and Cj; are independent
variables, the interaction matrix is not symmetric. The
retrieval of a pattern {&/} is represented by the time evo-
lution of its thermal averaged overlap, m,,(t), with the
spin configuration. The time evolution is particularly
simple in the limit ¢ — oo (keeping in mind that N — oo
first, and ¢ <logN). For parallel dynamics one has'® in
the “standard” case, A =0,

m,(t+1)=F,(m, (1)), @)
where
Fo(d) = [ o ~CDunhlpa+vwz)l, 8)

(r)'2

and w is the width of a “noise” due to random overlaps
(m,~1/~/N, v#u) with all the patterns which are not
macroscopically polarized. A slightly different evolution
equation exists for sequential dynamics, which, however,
leads to the same fixed point.'® In the standard case
w=p/c=a, and the network behaves as an associative
memory for values of the parameters (small 7 and small
a) such that (7) possesses a nontrivial fixed point.

We now proceed to discuss this same model in the case
A=0.
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Retrieval. — Let us first suppose that during the last z
time steps, the system was stabilized in the direction of
one pattern u =1 (the self-consistency of this assump-
tion will be checked later on): for —7+1 =<t =<0,

mi(t)=Q"% m,(t)=0, u=2,...,p. )

Using the method of Ref. 16, one derives the recursion
relation, for 1 <1<,

m+@+1)=F,(m+ () £r0"), (10)

where m + =m | £ m; and F,, is the sigmoidal function
defined in (8). If, among the p patterns, g belong to se-
quences, the width of the noise is w=all+(g/p)A2].
We shall discuss the case ¢ =p =ac, which in the ther-
modynamic limit corresponds to a finite number of
infinitely long sequences. Results for other cases can be
easily deduced from ours by the proper scaling of a. The
overlaps onto the other patterns u =2, ..., p remain zero
for t < 7. One must find the fixed points of (10) reached
from the initial condition m +(0)=Q'. This gives the
phase diagram shown in Fig. 1.

For large values of the transition parameter A, or large
values of the noise (by “noise” we mean both the
thermal noise governed by the temperature and the inter-
nal noise, governed by a, due to the existence of interfer-
ence effects for an infinite number of patterns), the sys-
tem makes a discontinuous transition towards a fixed
point mf =0, m¥ =Q2 This happens for A >A.(T,a).
The cross sections of this surface by planes of constant

e ' A A 1 A A A A l A A A A

FIG. 1. Phase diagram in the (A,a) plane for retrieval of
temporal sequences. The constant-temperature curves, 7=0
(full lines) and 7=0.5 (dash-dotted lines) define three regions.
In region C the system remains in the previous state. This is
the region of interest for the counting scheme. In region P the
system makes transitions but converges asymptotically to the
paramagnetic state. Correct retrieval of the entire sequence is
achieved in regions R; and R,. The dashed curve defines a re-
gion R; in which the overlaps with the successive patterns
exceed 0.95, at 7=0. The C-R boundary has been computed
for an initial overlap Q' =0.9.
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temperature are shown in Fig. 1. For any value of A, the
transition from pattern 1 to pattern 2 takes place if the
noise is strong enough. If A <A.(T,a) the fixed point is
atmy¥ >m¥.

If 7 is large enough it is reasonable to assume that the
system stabilizes into the fixed point before the next
transition takes place (the convergence to the fixed point
is exponentially fast away from the transition). There-
fore the next transition u=2-— 3 is described by the
same equation (10), where now m + =m, * ms, and the
initial condition is m+ =m - =Q?2

So, superimposed on the dynamics on short time scales
(10) which describes the transition from one pattern to
the next, there is a behavior on large time scales which
gives the values of the overlaps Q* on the successive pat-
terns. This long-time dynamics is a mapping Q* — Q*™!
obtained by solution of the fixed-point condition

o*tl=F,(Q**'+r0"), Q**1>0. an

The overlap Q* converges asymptotically towards a
nonzero value Q* if and only if (1+A)F,(0)=1. This
condition is realized if the noise is not too strong as can
be seen in Fig. 1. It is possible to store more patterns in
a sequence than separately, as in the case of A=0. This
is possible since a nonzero A increases not only the noise,
but also the signal which stabilizes the patterns. Howev-
er, the transition to Q* =() is continuous and one should
keep away from the transition line in order to have a siz-
able Q*.

The transition from the region C to R in Fig. 1 com-
pares qualitatively with simulations on fully connected
networks. The main difference between strongly diluted
and fully connected networks is the behavior when the
noise increases. In the first case sequences are retrieved
with an averaged overlap on successive patterns which
decreases gradually to zero at the right-hand curves in
Fig. 1. In the latter case this overlap drops sharply to
zero from m==1 at a critical a.(1). Results of simula-
tions on fully connected networks of N =200, at T =0,
indicate that a. =0.22-0.25 for A=1 and a,=0.26-0.3
for A =2-3. More extensive simulations are needed to
derive the full curve more accurately.

Counting.— This system can be used to count chimes
as suggested in Ref. 13. Suppose the system is started as
before, polarized in the direction of pattern 1 [see (9)].
But now the parameters are such that A <A.(7,a) (re-
gion C in Fig. 1), so that the transition to pattern 2 does
not take place. The additional noise due to a chime ar-
riving at time ¢, can trigger the transition. This will add
to the local field of (4) a random term h.7;d;,,
(n;= % 1), uncorrelated with any of the patterns, and A,
is the amplitude of the chime. At time t,, (10) is
modified to

m+(+1)=1 Z;rle(mi(tl)ikQ%nhc).

n

(12)

The effect of h. can drive the transition to pattern 2
(which is the internal representation of the cardinal fol-
lowing the one represented by pattern 1) if k. > h*(,
T,a). If noise is initially present (T and/or a=0), a
small signal (small A.) is enough to induce the transition
and allow for the chime to be counted, while for
T=a=0one needs'> h. =1 —A.

This counting scheme does not require the chimes to
be periodic. There is a lower bound {1 on the interval,
tx —tx—1, between two chimes: fL must be large enough
so that the system is ready to jump to state k +1 at the
moment . If ¢, is the thermalization time, one needs
t; = v+t The smaller A, the slower the thermaliza-
tion, the larger ¢;. On the other hand, there is no upper
bound on t; —tx-1.

Recognition.— The recognition of one sequence can be
achieved by the same mechanism as counting, if the sys-
tem receives at time 7, a signal hR!;,‘.“="+‘6,,,R which
tends to drive the transition to pattern k +1. Recogni-
tion takes place if hg > hg (A, T,a). We have found that
h¥O\,T,a) = ht(\,T,a) l[a typical example is A*(0.3,
0,0.1) =0.64 and A% (0.3,0,0.1) =0.42], so that there is
a range of parameters in which the system discriminates
between signals corresponding to random and stored pat-
terns. 'll"gm exception is T=a =0, for which A*=hg
=1—Ax

We now turn to the model of recognition in which the
system can bifurcate between two sequences, as defined
in (6). We start again with a state polarized on a single
pattern: my; =Q, my; =0, m;,=0 (i =1,2; u=2,...,p).
An external signal of strength A, conjugate to one of the
next patterns in the two sequences, (1,2) or (2,2), arrives
at time ;. To study the dynamics of the transition, in
the diluted model, we have to iterate the three coupled
equations for the evolution of the thermally averaged
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FIG. 2. Phase diagram describing a single transition in the
recognition model for (a) A =0.3 and (b) > =0.5, and for a =0
(full lines), @ =0.03 (dashed lines), and @ =0.05 (dash-dotted
lines). The lower curves in (a) define regions (to the left of
these curves) in which the system remains in the initial state.
All other curves separate between a region of transitions to a
mixture of three states (on the left side) and a region of correct
recognition.
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overlaps m,(¢), m,(¢), and m,(¢). The noise parame-
ter is w=a(1+212), where, now a=2p/c. Without
writing down the equations, we shall discuss their sta-
tionary solutions.

At very low values of T and a there is a region in
which the network remains in the initial state [the two
inner curves in Fig. 2(a)l. At T=0 and «=0, this
occurs for A <1—=200. For 1—2)00 <h <1, the fixed
point represents an equal mixture of the three patterns.
When either T or a is increased, the overlaps with the
three patterns become gradually unequal, m ;> my;
> m, [when the external signal is conjugate to pattern
(1,2)], but all of them are macroscopic. At a critical
value of T (or a) there is a sharp transition to a state
with m; =0, m3=1, m;=0. This is the region where
the network recognizes an external signal. Several ex-
amples of combinations of parameters where this occurs
are shown in Fig. 2. The overall behavior is, qualitative-
ly and even semiquantitatively, reproduced in numerical
simulations on fully connected networks. Again noise is
very important: At zero temperature the system can
easily get stuck into a mixture of three patterns
(my)~mj ~m2,~0.5), while the adjunction of thermal
noise helps it to make the proper recognition.

Let us make a brief remark on the long-time behavior.
When the system is in the region where a signal is well
recognized, and T (or a) is increased further, then m,
decreases and m; increases until they continuously be-
come equal. The rate at which this happens (which de-
pends strongly on A, through its effect on w, and weakly
on h) will determine the level of noise (T or @) at which
the system can recognize a long sequence and not just a
single signal. The discussion of this point and compar-
ison with numerical simulations on fully connected sys-
tems will be presented elsewhere. Let us only mention,
to give a general feeling, that in simulations for N =200,
p=10 (@=0.1), »=0.3, h=0.8, and T =0 the system
makes a correct recognition of the entire sequence, with
averaged m > 0.95, in 85% of the cases.

Another point to be considered is the dependence on
the time constants involved—the delay time t and the
interval between two consecutive signals. The argu-
ments, presented in the section on counting, for the lower
bound on the interval between two signals apply here as
well. In the region of parameters where the noise can in-
duce the transition, there is also an upper bound. The
external signal has to arrive before the combined action
of A and noise drives the system out of the stabilized pat-
tern to either one of the possible successors, selected by
fluctuations in the overlaps, or to a mixture of the two.

The main point of this paper was to show that the
model of diluted neural networks, proposed in Ref. 16,
can be extended to get an analytic understanding of net-
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works with temporal sequences of patterns. Further-
more, the results shed light on the corresponding behav-
ior in fully connected networks. An interesting result
concerns the role of noise, both thermal and internal.
Noise helps to retrieve temporal sequences stored with
lower values of A, and count or recognize weaker signals.
In the context of retrieval, such a role of noise was al-
ready pointed out in Ref. 6.
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