
VOLUME 61, NUMBER 20 PHYSICAL REVIEW LETTERS 14 NOVEMBER 1988

Use of the Soltzmann Equation to Simulate Lattice-Gas Automata
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We discuss an alternative technique to the lattice-gas automata for the study of hydrodynamic proper-
ties, namely, we propose to model the lattice gas with a Boltzmann equation. This approach completely
eliminates the statistical noise that plagues the usual lattice-gas simulations and therefore permits simu-
lations that demand much less computer time. It is estimated to be more efficient than the lattice-gas
automata for intermediate to low Reynolds number R ~100.

PACS numbers: 47.10.+g

In this Letter we describe a simulation technique that
can be used in some situations as an alternative to the
lattice-gas automaton. The latter has been proposed as a
new technique' for the numerical study of the Navier-
Stokes equation and is based on the simulation of a very
simple microscopic system, rather than on the direct in-

tegration of partial differential equations. Particles hop
between the sites of a regular lattice and may have col-
lisions only on the lattice sites. The collision process is
deterministic and is controlled by a set of collision rules
chosen so that, for instance, they conserve the number of
particles and linear momentum. The transition from the
microscopic to the macroscopic description of the lattice
gas automata (LGA) is done by defining coarse-grained
conserved densities, e.g., momentum density, obtained by
averaging their microscopic equivalents on subregions of
the lattice. The presence of microscopic conservation
laws then reappears in the macroscopic dynamic as hy-
drodynamic modes and, if the underlying regular lattice
has been properly chosen, one can argue that the form of
the hydrodynamic equations is very similar to that found
for simple fluids.

Many authors have tested the validity of the
lattice-gas scheme by simulating specific flow

configurations that are analytic solutions to the Navier-
Stokes equation. All these simulations required a rather
massive use of computer resources because the micro-
scopic dynamic of the LGA is intrinsically noisy and
to obtain reasonably resolved coarse-grained densities it
is necessary to average over a combination of large
subregions of the lattice, long times, and numerous ini-

tial conditions.
We would like to point out that the hydrodynamic

properties of the lattice-gas automata can be determined
very efficiently by using an alternative technique. What
we suggest is to translate the LGA into a related
Boltzmann model. The Boolean site populations of the
LGA then become real numbers between 0 and 1 repre-
senting their average value and their time evolution con-
trolled by a Boltzmann equation (BE) derived from the
lattice-gas model.

It is clear that what we have just described is not

a —1C, = cos z
3

a —1
,sin x a=1, . . . , 6.

The microscopic densities corresponding to the number
of particles and momentum conservation are, respective-
ly, n(r, t) =P,f, (r, t), and gt(r, t) =P,C, tf, (r, t),
where f, (r, t) is the Boolean population field that indi-
cates the presence (1) or absence (0) of a particle mov-

ing with momentum C, at site r and time step t, and we
use i,j,k, l, . . . to label Cartesian coordinates. The
time evolution of the particle populations can then be

equivalent to the LGA since, by factorizing the LGA
collision operator on the one-particle distribution func-
tions, we completely neglected all the effects due to the
correlations between the particles. Nevertheless, the
Boltzmann model shares many features with the LGA.
In particular, it has the saine hydrodynamic behavior,
even though some details, such as the transport
coefficients, can be slightly different. This implies that
basically all the peculiarities of the LGA, e.g. , the lack
of Galilean invariance, are inherited by the BE. Also,
the Boltzmann gas is, like the LGA, a stable numerical
scheme since its time evolution satisfies an 0 theorem.
We note that the BE approximations of the LGA are
very common in the literature. s '0 However, their use
was previously restricted to analytical calculations and
not to actual numerical simulations.

There is a feature of the LGA that it is not shared by
the Boltzmann model, namely, the noise. In the latter
approach we directly study the time evolution of the
mean values of the one-particle distribution functions
and we therefore completely bypass the statistical
averaging step needed in the LGA simulations. We may
then obtain accurate results even when using small lat-
tices (say 8 x 8 sites in two dimensions).

The Boltzmann scheme is obviously applicable to any
lattice-gas automaton and in particular it can be used for
the testing of 2D and 3D models. For the purpose of the
present Letter we constrain ourselves to the case of the
original 2D lattice gas on an hexagonal lattice. In this
model, the particles have momenta chosen from the vec-
tor
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FIG. 1. Transport coefficients as a function of the density
for the Boltzmann gas. The data were obtained by relaxation
measurements. The wavelength of the waves used is L =6443.
The set of rules used is the FHP-III defined in Ref. 2. The
solid lines are the Chapman-Enskog values.

written, with the assumption that the particles first hop
in the direction of their velocities and then they are sub-

ject to collisions, as

f, (r, t+1)=f, (r —C„t)+T,(lfb(r —Cb, t)j),
where T, is the microscopic collision operator, that is
the Boolean algebra expression that corresponds to the
chosen set of collision rules. In the BE approximation of
the previous equation we understand f, (r, t) as a con-
tinuous variable between 0 and I and replace the Boole-
an operations in T, with the appropriate arithmetic
operations.

The theory of the Boltzmann equation for the lattice
gas has been extensively treated in Refs. 8-10 and vari-
ous authors ' have given formulas for the transport
coefficients based on the Chapman-Enskog approxima-
tion. As a straightforward application of this new tool
we computed the values of the bulk and kinematic
viscosities of the Boltzmann gas by studying the decay of
shear and sound waves of wavelength L. The set of col-
lision rules used is FHP-III described in Ref. 2. This set
includes all the possible collisions that conserve a num-

ber of particles and their total momentum. Because of
the simulation geometry we can suppress one of the di-
mensions and run on a L X1 lattice. The simulation data
are then compared with the Chapman-Enskog predic-
tions indicated as solid lines in Fig. 1. The agreement
between the two, better than one part in 10 for L & 40,

FIG. 2. Relative discrepancy between the measured kinetic
viscosity and the corresponding Chapman-Enskog value as a
function of the shear wave wavelength L. The straight line is

fitted on all the points except the two leftmost. The slope of
the fit is —2.009. It is not exactly —2 because of higher-order
corrections for the very small wavelength. These corrections
are particularly evident for the first two points.

is not surprising, but it is interesting to note that we can
obtain hydrodynamic behavior even with very small lat-
tices. To support this claim we plot in Fig. 2 the
discrepancy between the kinematic viscosity measured
from the simulation and vcF, the Chapman-Enskog pre-
diction, as a function of L. In this plot the average num-

ber of particles per site is p 2.1. The above defined
discrepancy is proportional to (k/L)2, where X is the
mean free path of the gas, as can be easily predicted, but
the interesting result is that the simulation gives values
of v accurate to better than 5% even for a lattice as small
as 4&1.

The last plot we present is a test of the rotational sym-
metry" of sound waves in a small system of 33X33 lat-
tice sites with average density p=2. 1 particles per site.
We increase the mass of the central site, the "origin, " by
less than 1Vo. A "cylindrical" sound wave then devel-

ops. ' In Fig. 3 we plot the resulting radial density
profile after 16 microscopic time steps. The solid line is
obtained by our interpolating with a cubic spline, the
density measured along a straight line passing through
the origin in the direction of one of its nearest neighbors.
We then plot a symbol for each site of the lattice at the
appropriate mass density and radial distance from the
origin. As expected, all the symbols lay very close to the
solid line. The short-wavelength oscillation close to the
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sound wave propagation, we get r, =l/c, . How large
can t be'? It is the smallest resolved time scale r-l/v,
and therefore i/r, =(c,/v)LR '. Substituting in Eq.
(1) we get another constraint on L:
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The previous equation, together with the incompressibili-

ty constraint, defines a transition Reynolds number
R~ Co/t?gv below which the minimum size of the lat-
tice is determined mainly by the requirement of velocity
resolution rather than the required Reynolds number.
We can now estimate the current amount of computer
work, W~, needed to perform the simulation. We have

Wi L T, where T L/v is the largest eddy turnover
time. Therefore Wl L /vR and, for R & R~,

~I 4

R1 v (3)
v c-

I

10

Rodius

I

20
while

4 5

FIG. 3. Radial density distribution of a cylindrical sound
wave 33x33 lattice sites, 16 time steps after initial distur-
bance, see text. The solid line is obtained by our interpolating
the mass density along a line passing through the site initially
excited and one of its nearest neighbors. For each site of the
lattice we mark a point corresponding to its radial distance
from the origin (the locus of the original disturbance) and its
mass density.
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otherwise. The work required by the Boltztnann equa-
tion is instead, for all R,

origin is due to a peculiar lattice effect, common to both
the LGA and the Boltzmann model, which has very in-

teresting consequences that we will discuss else-
where '3'4

Unfortunately the Boltzmann scheme described here
does not seem to be an optimal tool for the study of high-

ly turbulent flows. In fact, let us consider the simulation,
using the LGA, of an incompressible, two-dimensional,
flow of Reynolds number R. We require resolution t? in

the velocity field and spatial resolution g. If we intro-
duce L, v, v, and I as, respectively, a characteristic
length, velocity, viscosity, and linear dimension of the
coarse-graining subregions, we have R vL/v, 's

ri & bv/
v, and g& I/L. Since the flow is assumed to be in-

compressible we also have the constraint L &Rv/c„
where c, is the speed of sound of the gas. Using stan-
dard arguments we can evaluate

Cpg)

where (Cop) -3p(7 —p)/49 is the variance of the
momentum fluctuation per site while i/~, is the number
of independent samples obtained by averaging over a
time i. Assuming that the physical process relevant to
the destruction of correlations in a region of size I is

where g„ is the work needed to update a site of the
Boltzmann lattice measured in units of LGA site up-
dates. From Eqs. (3)-(5) we see that, for R &R„,
R„g„'~R ~ and it is more convenient to use the
Boltzmann equation. An analogous calculation for
memory space considerations gives the upper bound

R, g,
'~ R & where g, is the memory requirement per

BE site in units of memory needed for a site of the LGA.
At density p 2.1 particles per site and for t? g 0.1 we

get R ~
= 340. In the simulations discussed in this Letter

50, g, 32 giving R„=200,R, 142. See Ref. 15.
We have just shown that the BE is, for R & R„more
efficient than the LGA. Also, for asymptotically large
Reynolds numbers the standard numerical techniques
are more economical' than the LGA. However, there
are indications, ' that the crossover point is much
greater than R, . Thus there is a window in the Reynolds
number in which the LGA schemes are computationally
superior.

In conclusion, we have presented a very simple tool for
some hydrodynamic simulations and for the testing of
the hydrodynamic properties of an LGA. This tool is
particularly efficient for low Reynolds number simula-
tions.

We have the pleasure to thank L. Kadanoff, M. Mard-
er, and S. Zaleski for interesting and fruitful discussions.
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