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We verify experimentally for optical waves the striking memory effect predicted very recently by
Feng, Kane, Lee, and Stone. We present data for both transmission and reflection, and find general
agreement with the theoretical predictions for the linear scale dependence and asymptotic exponential
falloff of the memory effect. The theoretical and experimental results suggest that significant informa-
tion about the spatial variation of the incident waveform is preserved during passage through a highly

disordered, strongly multiply scattering medium.

PACS numbers: 42.20.—y, 71.55.Jv, 78.90.+t

Recently, Feng, Kane, Lee, and Stone (FKLS) pre-
dicted a striking memory effect in coherent wave propa-
gation through disordered media.! At issue is the follow-
ing: To what extent is information about the spatial
variation in phase and amplitude of an incident wave
preserved during its transmission through a highly ran-
dom, multiply scattering medium? Implicit in the re-
sults of FKLS is the answer that transverse spatial varia-
tions on a scale finer than the sample thickness L are for-
gotten, but that information on larger scales is preserved.
Thus, the emergent wave “remembers”’ much, but not
all, about the incident wave from which it derives. In
this Letter we present experimental data for both
transmission and reflection which demonstrate (i) the ex-
istence of the predicted memory effect,' (ii) the predict-
ed linear dependence on sample thickness of the scale
over which memory loss occurs in transmission,' and
(i) the predicted exponential decay for the asymptotic
falloff! of the angular correlation function C(x) that
serves as a quantitative measure of the extent of infor-
mation preservation. Here x measures changes in the in-
cident waveform. Although our experimental results
generally verify the theoretical predictions of FKLS, we
do find one significant difference between experiment
and theory— namely, that the exponential decay of C(x)
is observed to set in almost immediately with nonzero x,
while the theory predicts that its onset should be de-
layed.

Because of the randomness of the scattering medium,
the intensity of the emergent wave always has an intrin-
sic, complex spatial variation which gives rise to the rap-
id, apparently random, intensity fluctuations known as
speckle. When excited with a normally incident plane
wave, this speckle pattern represents a sample-specific
fingerprint that contains a great deal of (difficult to deci-
pher) information about the particular realization which
produces it. Well defined changes in this speckle pattern
as the incident wave front is varied reflect some of the in-

formation remembered during transmission through the
random medium, and this is accessible to measurement.

One of the simplest possible modulations of the in-
cident wave front is a linear variation in phase across the
sample face. To the extent that this linear phase varia-
tion is remembered during transmission, the resulting
speckle pattern will be identical to the pattern excited by
a normally incident plane wave (the reference pattern),
except that it will be shifted in angle to one side. By
changing the degree of phase variation across the sample
face, the speckle pattern can be swept in a direction.
When the extent of the linear phase variation becomes so
large that a significant phase difference occurs over a
transverse dimension of order the sample thickness L, the
speckle pattern begins to change. By measuring the de-
gree of correlation of this new pattern with the original
reference pattern, one obtains a quantitative measure of
the extent of the memory effect.!

The requisite linear phase variation can be obtained
most simply by changing the angle of incidence. If this
is done by rotating the incident laser beam direction
around the sample, then the emergent speckle pattern
tracks the laser direction. Thus, one has the striking re-
sult that although the sample appears totally diffuse and
nearly opaque, and apparently nothing can be discerned
upon attempting to look through it, nonetheless, the
direction of the (invisible) incident laser beam can be
immediately determined. Significant information about
the incident wave front has thus been remembered and
transmitted through the random medium, and one has to
some extent succeeded in “looking” through a visually
impenetrable obstacle.

The experimental confirmation of this predicted' be-
havior is shown in Fig. 1. In obtaining these data, the
diameter of a polarized 5-mW He-Ne laser beam
(A=0.633 um) was expanded to 15 mm, and the central
to 6 mm, representing a nearly flat wave front, was used
to excite the speckle pattern. Placing this 6-mm mask
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FIG. 1. Memory effect. The right-hand side shows images
of a small portion of speckle patterns in transmission as the in-
cident laser beam direction is varied. The arrow at the bottom
of each image calls attention to the semicircular arc enclosing
a bright spot (the “bulls eye”) which serves as a convenient
visual reference for tracking the motion of the patterns. The
initial reference pattern produced by a normally incident laser
beam is shown in (a), while in (b) the laser is rotated by 10
mdeg, and in (c) by 20 mdeg. The correlation function shown
to the left of each image corresponds to the cross-correlation
coefficients of the reference pattern with the corresponding im-
age. This correlation is plotted as a function of pattern shift in
pixels, and the peak represents the maximum degree of overlap
of the two patterns. Note that the correlation function tracks
the speckle patterns, which, in turn, “remember,” and there-
fore track, the incident laser beam direction. The pattern in
(d) is one which is unrelated to the reference pattern in (a),
and the correlation function shows the expected small statisti-
cal fluctuations about zero.

directly on the sample, together with careful system
alignment, ensured that the laser beam did not walk
across the sample face during rotation. The free-space
speckle patterns were recorded with a sensitive charged-
coupled-device video camera, and digitized by an on-line
microcomputer. The sample was a thin sheet (370-um
thickness) of opal glass supported on a clear glass sub-
strate. In Fig. 1(a) the laser beam was normally in-
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FIG. 2. Correlation function C(86) in transmission. &6 is
the angle of rotation of either the laser beam direction or the
sample. The solid lines are least-squares fits with an exponen-
tial function. Curve g, ground glass; curve b, 370-um-thick
opal glass; curve b', theory; curve ¢, 810-um-thick opal glass;
curve ¢', theory.

cident, and the correlation function shown is that of the
initial (reference) speckle pattern with itself. This func-
tion is computed in terms of the rightward shift in pixels
of a replica of the pattern against the original. For zero
shift, the pattern and its replica are, of course, totally
correlated, but as the shift increases, correlation is rapid-
ly lost because of the apparently random arrangement of
the speckle spots. The 0.12-mrad full width at half max-
imum of this autocorrelation function measures the
mean angular diameter of a speckle spot, and is in close
agreement with the expected width, which is that of the
diffraction pattern of the 6-mm circular aperture used to
define the incident laser beam. Other interesting corre-
lation effects®> can be studied by extending these
methods.

In Figs. 1(b) and 1(c) the laser beam is successively
rotated about the sample by a small amount 6. The
transmitted speckle pattern may be observed to follow
the incident beam direction while slowly changing. The
cross correlation function (between the initial reference
pattern and the new pattern) accurately tracks this
motion, while its peak height decreases as correlation is
lost. In Fig. 1(d), the cross-correlation function of two
unrelated patterns is shown, and illustrates the expected
small statistical fluctuations about zero.

The ensemble-averaged correlation function, C(59), is
shown for transmission in Fig. 2, and for reflection in
Fig. 3. These data represent the recording, digitizing,
and analysis of some 250 separate patterns, each con-
taining several hundred speckle spots. As may be seen,
in every instance the data are well approximated by a
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FIG. 3. Correlation function C(86) in reflection. &6 is the
angle of rotation of the 370-um opal-glass sample. The dashed
line is theory, Eq. (1), corrected for the asymmetric experi-
mental geometry.

simple decaying exponential.

Curve a in Fig. 2 shows the results in transmission for
a coarsely ground glass surface, which corresponds to a
sample with a near zero value for L. These data were
obtained by rotating the laser direction around the sam-
ple, as in Fig. 1. For this sample, C(58) is expected to
be nearly independent of §0, in agreement with experi-
ment. Since these data were obtained and processed in
exactly the same fashion as for thick samples (the laser
was attenuated to keep the transmitted intensity the
same), this agreement also verifies that system align-
ment, the recording apparatus, the digitizing process,
and the data analysis were all well behaved. We attri-
bute the small residual decay of C(§6) with increasing
86 to the finite surface roughness, which was estimated
from microscopic examination to be about 15 um.

Curves b and ¢ of Fig. 2 show the results in transmis-
sion for 370-um- and 810-um-thick opal-glass multiple
scatterers. These data were obtained in two ways. The
first was to rotate the direction of the incident laser
around the sample, as in Fig. 1, and to measure the peak
height of the correlation function. In accordance with
expectation, we found that the position of the peak of
C(86) accurately tracked the laser beam to within the
half-pixel experimental error (0.4 mdeg). Since in the
forward direction only the angle between the laser and
sample normal is relevant, equivalent results should be
obtained by rotating the sample in a stationary laser
beam. In this case the speckle pattern, which remembers
the laser direction, also remains stationary, but slowly
changes in form as the sample rotates. Both methods
did, in fact, give entirely equivalent results, and the data
shown are the average of the two.
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For a finite transport mean free path /, the effective
thickness of the sample is expected to be approximately
L —1, since at least one transport mean free path is re-
quired before the injected light becomes diffusive. From
transmission measurements we estimate /=100 um.*
Fitting the data by C(gL)=expl—bq(L —1)], where
the momentum difference is ¢ =2766/A, we find that for
both the 380-um sample and the 810-um sample,
b=1.07. Considering the likely magnitude of the vari-
ous experimental errors, we estimate that the uncertainty
in b is of order 10%, and that a value of unity would be
consistent with the data.

The theory of FKLS predicts' that C(qL)=I[qL/
sinh(gL)]?, where it is assumed that /> (weak locali-
zation regime) and the calculation is performed for a
waveguide geometry with dimension W. Though the ex-
periment has an open geometry we expect that as long as
the beam diameter is much greater than the sample
thickness the use of the calculation for the waveguide
geometry (with W set to the beam diameter) should pro-
vide approximately correct results. Our data indeed sup-
port the major predictions of this theory as regards to the
existence of the memory effect, the linear scaling of the
half-width of C(gL) with L, the scale of its half-width
(gL ~1), and the exponential form for its asymptotic de-
cay. There is one significant difference, however. The
predicted form for C(gL) always starts flat for small g,
then rolls over, and finally becomes asymptotic to an ex-
ponential decay. The experimental data, on the other
hand, do not exhibit a flat region, but begin an immedi-
ate exponential falloff. At present it is not clear if the
differences between theory and experiment are simply
due to the fact that the theory is written for a waveguide
geometry, rather than for unconstrained optical propaga-
tion, or whether there is some additional mechanism for
memory loss that needs to be added.

In Fig. 3 we plot the results for reflection. These data
were obtained by rotating the sample. In order to avoid
specular reflections, we used an asymmetric geometry in
which the speckle pattern was measured at an angle of
“reflection” 6, =0 (i.e., along the surface normal), while
the angle of incidence of the laser beam was 6; =30°. If
the penetration depth of the light is assumed to be negli-
gibly small compared to the beam diameter, the angle of
rotation of the speckle pattern, §6,, is related to the an-
gle of rotation of the sample, §6, by

80, =[1+cos(6;)/cos(6,)166.

We found experimentally that the peak of the correlation
function followed this form to within the half-pixel ex-
perimental uncertainty. Fitting an expression of the
form C(gl/) =exp(—agql) to the data, and again taking
/=100 um, we find that a =3.0.

FKLS did not give an expression for the correlation
function in reflection. Extending their treatment to the



VOLUME 61, NUMBER 20

PHYSICAL REVIEW LETTERS

14 NOVEMBER 1988

reflected case yields
Clq,L,I)
={Lsinhlgl1sinh[g(L —1)1/qI(L — DsinhlgL}?, (1)

where, as before, ¢ =2766/A. Although this function de-
scribes the major features of the data, the same
differences between theory and experiment that we re-
found for transmission exist also for reflection.’

Why is L the smallest scale over which information is
preserved upon transmission? We believe that a simple
physical answer is that photon diffusion scrambles the in-
cident waveform over this scale. If the photon trajec-
tories were ballistic, then the incident waveform, super-
imposed upon the intrinsic random fluctuations, would be
exactly replicated at the output face of the sample. This
is essentially what happens for ground glass, and ac-
counts for the near perfect degree of correlation found
experimentally. But in thick samples the trajectories are
diffusive, with approximately equal probabilities for
diffusing in any direction. Accordingly, light injected at
a given point on the input face ends up being spread out
over an area of diameter 2L on the output face. Thus,
photon diffusion scrambles the phase of the incident
wave on this scale, leading to the observed loss of corre-
lation. Could an arbitrary incident waveform be recon-
structed (with limiting resolution L) if a suitable set of
reference speckle patterns were available? Both theory
and experiment suggest that the information needed to
do so is actually preserved during transmission through

the random medium, thereby holding out the possibility,
in principle at least, of imaging through visually impe-
netrable objects. ®
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FIG. 1. Memory effect. The right-hand side shows images
of a small portion of speckle patterns in transmission as the in-
cident laser beam direction is varied. The arrow at the bottom
of each image calls attention to the semicircular arc enclosing
a bright spot (the “bulls eye”) which serves as a convenient
visual reference for tracking the motion of the patterns. The
initial reference pattern produced by a normally incident laser
beam is shown in (a), while in (b) the laser is rotated by 10
mdeg, and in (c) by 20 mdeg. The correlation function shown
to the left of each image corresponds to the cross-correlation
coefficients of the reference pattern with the corresponding im-
age. This correlation is plotted as a function of pattern shift in
pixels, and the peak represents the maximum degree of overlap
of the two patterns. Note that the correlation function tracks
the speckle patterns, which, in turn, “remember,” and there-
fore track, the incident laser beam direction. The pattern in
(d) is one which is unrelated to the reference pattern in (a),
and the correlation function shows the expected small statisti-
cal fluctuations about zero.



