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A quantum Monte Carlo simulation method is introduced which treats core and valence electrons sep-
arately. This greatly minimizes problems associated with the very different energy and time scales pre-
sent even at a moderate atomic number. The core is treated variationally by Metropolis sampling of a
trial wave function, while the chemically important valence region is treated by a quantum Monte Carlo
algorithm that solves the Schrodinger equation. We calculate ionization potentials and electron affinities
of C, Si, and Ge, and find excellent agreement with experiment. Effective speedup over standard quan-
tum Monte Carlo approaches is estimated to be as large as a factor of 5000.

PACS numbers: 31.15.+q, 02.50.+s, 02.70.+d, 03.65.Ge

In the past several years increasing attention has fo-
cused on quantum Monte Carlo (QMC) methods for ob-
taining atomic, molecular, and chemical properties, in-
cluding electronic structure.'™> QMC is a method of
solving the Schrodinger equation stochastically and, with
suitable algorithms, exactly. Results obtained have been
remarkably accurate and account explicitly for correla-
tion effects. Recently, workers have begun to explore
ways that treat only valence electrons,®® motivated by
the steep dependence on nuclear charge Z of the compu-
tation time required to reduce statistical uncertainties to
the level of chemical accuracy. This Z dependence, es-
timated”® at Z%°, arises partly from the increasingly
large fraction of the energy associated with the core rela-
tive to the chemically active valence electrons. The core
energy rises as Z2 and, closely related, the time steps
that may be taken in the simultaneous decrease as Z ~2
due to the reduced phase space of the core electrons.
This causes extremely poor sampling efficiency for the
chemically important valence electrons, while leaving a
large “background” energy and variance from the core.
Increased sampling efficiency would greatly enhance the
speed and broaden the applicability of QMC, a goal be-
ing actively pursued.?>%' The advantage of treating
valence electrons only, for example, with use of pseudo-
potentials, is that the overall Z %> dependence weakens to
(Z°%)34 where Z T is a screened nuclear chargc:.7

The use of pseudopotentials is long established in both
solid-state physics and in quantum chemistry for large-
scale computations involving heavy atoms. The use of
pseudopotentials, however, is known to lead to inaccura-
cies when core electrons significantly influence the
valence electrons through either electronic correlation or
polarization effects. Further, every partitioning of core
and valence electrons requires computation of a separate
pseudopotential, a task requiring additional effort and
notably great care.

In this Letter we present a novel approach to the Z-
dependence problem that avoids pseudopotentials. We

introduce a random-walk QMC method in which the
core is treated separately from the valence space, al-
though still by a Monte Carlo method, and valence ener-
gies are computed directly. Since most chemical proper-
ties derive from the behavior of the valence electrons, we
make the approximation that the core may be adequately
described by a trial wave function ¥¢re. We may, how-
ever, choose ¥, as accurately as desired, even includ-
ing explicit interelectronic distance terms. Core elec-
trons follow a random walk which distributes them with
a probability | ¥eore | 2 by a Metropolis algorithm.!! The
valence electrons are sampled with use of a separate trial
function ¥.,. They are, however, treated by a QMC
method that “solves” the Schrodinger equation'? and en-
ables one to sample from the true wave function. From
the valence walk, moving in the potential created by the
core electrons, one obtains the valence energy of the sys-
tem.

In this scheme the valence electrons, unrestricted by
the much faster core time scale, may take significantly
larger steps t than possible with standard QMC, and
rapidly reach equilibrium in the core potential. The core
itself also evolves, enabling one to sample a representa-
tive distribution of cores. Thus the large-Z dependence
is reduced because the valence energy has a much weak-
er dependence on Z than the total energy, and because
time steps appropriate for the valence electrons are
readily used. As a result, for a fixed amount of computa-
tion, one obtains a much smaller variance.!> This en-
ables one to treat large-Z atoms to a precision consider-
ably beyond the usual capability of all-electron QMC
methods.

The present approach has numerous advantages over
pseudopotential methods, though the goals are essentially
the same. In fact, in some ways the model potentials
used in Ref. 8 are similar: They involve only the
Coulomb part of a pseudopotential, and rely on the
nodes of the core to generate an excited-state solution for
the valence shell. However, unlike the pseudopotentials
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of any sort, the core electrons are represented explicitly
here. Thus, both core polarization and correlation
effects may be incorporated systematically, without in-
troducing semiempirical polarization potentials. Fur-
ther, the separation into core and valence electrons can
be defined arbitrarily. Our approach is also more natu-
ral within a Monte Carlo framework.

For a system containing Ny core electrons and N,
valence electrons, the Hamiltonian is separated into

A Z4 1
Hcore=z [——'V.v2_2_+z_ + VN — X/i}i\l’

s=1 2 ATsa  (<sTs
(1a)
and
Nyy Neore
(1b)

where Vyy is the nuclear potential energy and V%

taken to be

> XYz 78R,
AB<A

is

with Z*T=Z — N_o.. The indices s and 7 refer to core
electrons, i and j to valence electrons, and 4 and B to
nuclei. Atomic units are used throughout.

Generally, a Green’s function is used to generate a
branching ensemble of configurations that samples the
exact wave function.! We follow this approach for the
valence walk with a modified Green’s function G to prop-
erly match to the core solution. Specifically, by damping
the branching near atomic centers, a smooth crossover is
effected from the exact QMC valence walk to the
Metropolis walk at the core. This Green’s function has
the form !4

G(R— R, 7) =GplGpl"™®, (2a)
with the damping function given by
y(R)=ITIT{1+expl—(rig—ps)/as} 7 . (2b)
A i

The diffusion Green’s function is'%'*

Gp =(4zD7) ~3¥2exp{—[R' =R — DtFp(R)1%/4D1}
(3a)

while the branching factor is
Gg=exp(—t{[E,(R)+E,(R)]/2—E7}). (3b)

The functions E; and Fgp are simply related to the trial
wave function.!? In Eq. (2b), the products are over
atomic cores and electrons, respectively, while the pa-
rameters p and a are a cutoff radius and width. As a
valence electron approaches within p of an atomic core,
y(R) rapidly approaches zero, thereby damping out the

branching. Such a walk is precisely our Metropolis
QMC walk,! yielding the variational distribution
| %,a1] % in the core region. Since by construction ¥, is
orthogonal to ¥..., this prevents the valence solution
from “collapsing’ into the core.

For the core, we follow a single configuration’s random
walk rather than an ensemble. This is justified since the
core walk is nonbranching, and because ensemble
averaging may be replaced by time averaging. Further,
a single core walker is advantageous for systems contain-
ing a large number of core electrons so that the core
evaluation remains a small portion of the total calcula-
tion. Each member of the valence ensemble uses the sin-
gle core configuration for the core-valence two-electron
potential (see Fig. 1). Because the core electrons are
represented explicitly, some core-valence electronic cor-
relation effects are taken into account. Moreover, core-
core electron correlation may be included by use of
correlation functions or multideterminant core trial wave
functions. Further, because the trial wave function is ob-
tained from an all-electron calculation, the atomic cores
are polarized by (and in turn polarize) the molecular en-
vironment to the extent of the method used to generate
the core trial wave function. Finally, where relativistic
effects cause core contraction, a relativistic Hartree-Fock
W¥oore used in damped-core QMC will reflect these effects.
Such a choice of ¥ serves the same purpose as the use
of a relativistic effective-core potential in QMC.®

Although we include core-valence electron correlation
through r;; ' terms in Eq. (1b), the core configuration
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FIG. 1. Schematic diagram of damped-core QMC. The

valence ensemble is represented by a stack of configurations.
The core ensemble contains only one configuration. Valence
electrons interact with the core through the Coulomb potential.
Since core electrons are represented explicitly, some core-
valence correlation effects are taken into account. Valence
configurations evolve by diffusion and branching, moving with
a time step 7va, and guided by the trial function ¥.a. The core
configuration only diffuses, guided by ¥core, and with a time
step Tcore-
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TABLE I. Ionization potentials of C, Si, and Ge. Uncer-
tainties in the last decimal place are given in parentheses.

TABLE II. Electron affinities of C, Si, and Ge. Uncertain-
ties in parentheses.

Ionization potentials (eV)
Damped-core

Electron affinities (eV)
Damped-core

Atom QMC Experiment? Atom QMC Experiment?®
C 11.2(2) 11.26 C 1.2(2) 1.27

Si 8.3(2) 8.15 Si 1.3(2) 1.39

Ge 8.0(3) 7.90 Ge 1.3(3) 1.2(1)

2Reference 18.

nevertheless remains unaffected by the valence electrons
because the core Hamiltonian and trial wave function
were chosen to contain no valence terms. Additional
core-valence correlation may be included through use of
a multiplicative core-valence correlation function in
Weore. Also, one need not factor the trial function as
done here. Instead, one could use a full all-electron
function as ¥,,, fixing the core coordinates at any time
step from the separate core walk. An advantage of the
latter approach is that one accounts fully for core-
valence antisymmetry. However, since the nodes' of
¥.ore depend only on the core configuration, while the
nodes of ¥,, depend on both the valence and the core
configurations, core moves may result in a valence node
approaching a valence walker without any walker feeling
the influence of that node. This partly reduces the
effectiveness of importance sampling, thereby increasing
the variance. In the usual all-electron walk the core
electrons would be repelled from this node. Our factori-
zation of the trial wave function avoids this problem.

We have implemented the procedure described here
and performed damped-core calculations on C, Si, and
Ge. Our core and valence trial wave functions were ob-
tained by performing all-electron self-consistent-field
calculations (as is commonly done in standard QMC),
and using the corresponding molecular orbitals to form
the necessary Slater determinants. The atomic double-
zeta basis of Clementi!” were used. Finally, the deter-
minants were multiplied by electron-electron and elec-
tron-nuclear correlation functions chosen to satisfy the
electron-electron and electron-nuclear cusp condi-
tions.>!?> The valence ensembles were chosen to have
from 100 to 400 members.

Our calculated ionization potentials and electron
affinities (cf. Tables I and II), show very good agreement
with experiment. The quoted errors should not be con-
sidered the limits achievable by this method, since inves-
tigation of trial wave functions and computation time for
these systems was not exhaustive. Results were found to
be fairly insensitive to the choice of the parameters p and
a. Thus we set p to a nominal value from zero to 0.1 a.u.
with ¢ =0.025 a.u.

Table III presents data from representative runs on C,
Si, and Ge for roughly equal computation times. By
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comparing valence and core energies and uncertainties
the performance of our method can be ascertained. The
most striking result is that for each atom the statistical
uncertainty of the valence energy is considerably smaller
than that of the core, and hence is reduced significantly
relative to usual all-electron QMC. This is especially no-
ticeable for Si and Ge. This smaller uncertainty is partly
due to the larger valence ensemble, but primarily we ob-
tain greater efficiency because we use time steps up to 3
orders of magnitude larger than possible in usual QMC.
For example, the smallest core time step used here was
0.01 a.u. A standard QMC calculation? for F required
time steps as small as 0.0005 a.u. Scaling by Z ~2 im-
plies that a similar calculation of Ge would require a
time step of about 0.00004 a.u. Thus here the core is
being moved faster by a factor of 250. This is possible
because the Metropolis sampling has no time-step error.
The valence (accounting for most of the computational
effort) moves faster still— 500 times faster in the present
calculation. This ratio is consistent with the ratio of the
core to total energies. This speedup derives from the
decoupling of the valence from the core, allowing a more
natural valence time step to be used. Additional time
savings result from the smaller number of active elec-
trons in the wave-function evaluation, and 1 order of Z
lower cost in evaluating the Coulomb potential. Overall,
for Ge we estimate a speedup of S000 over standard
QMC.

We note that it is also possible to use the same core

TABLE III. Damped-core QMC energies and parameters
for C, Si, and Ge, for equal computation times. Quantities are
in atomic units. /V is the number of electrons, E is the energy,
and r is the rms radius obtained in the simulations.

Carbon Silicon Germanium
Nyal 4 4 4
NOOTC 2 10 28
Ea —5.397(2) —3.815(7) —3.798(27)
E core —32.418(10) —285.2(5) —2070.(8)
Tval 1.95(1) 2.77(3) 2.88(8)
eore 0.312(8) 0.547(14) 0.598(26)
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configurations for the valence walks of the atom and the
ion, or more generally for atoms and molecules. In this
way additional variance reduction may be achieved
through correlated sampling."?® We are currently ex-
ploring this approach.

For systems containing very large-Z atoms, a hybrid
between pseudopotentials and damped-core QMC can be
constructed. For example, for first-row transition metals
it is common practice to include the 3s and 3p shells in
the valence space because of their strong overlap with
the 3d orbitals. In a hybrid approach one could repre-
sent the 1s, 25, and 2p electrons using pseudopotentials,
while using damped-core QMC on the remainder. Only
the 4s and 3d electrons need be in the branching QMC
walk. Damped-core and pseudopotential approaches are
thus complementary. As discussed earlier, however, the
damped-core approach avoids many of the drawbacks of
pseudopotentials.
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FIG. 1. Schematic diagram of damped-core QMC. The
valence ensemble is represented by a stack of configurations.
The core ensemble contains only one configuration. Valence
electrons interact with the core through the Coulomb potential.
Since core electrons are represented explicitly, some core-
valence correlation effects are taken into account. Valence
configurations evolve by diffusion and branching, moving with
a time step 7va, and guided by the trial function ¥,a. The core
configuration only diffuses, guided by ¥, and with a time
Step Teore.



