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It is argued by way of a renormalization-group analysis that the lower critical dimension of macro-

scopic mutual entrainment in a class of populations of oscillators satisfies a certain inequality which is

sensitive to the tail of the distribution of native frequencies. This result is supported in part by numeri-

cal simulations as well as a proof of the absence of long-range order in one dimension.
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Recently, quite a few papers have been devoted to
the dynamics of large populations of interacting self-

oscillators with distributed native frequencies or winding

numbers. ' ' Such populations are known to model a

variety of biological systems with rhythmic activity, e.g. ,

diverse living organs such as the small intestine, swarms

of fireflies, and so on. The rhythmic activities exhibited

by such systems may be identified with a macroscopic
mutual entrainment (MME) of oscillatory elements
where "macroscopic" means that the number of elements
entrained to a common frequency is comparable to the
population size N (»1). Therefore, one of the impor-
tant subjects in the study of large populations of oscilla-
tors is to search for conditions of the appearance of
MME. Some new insights may be expected to come
from such studies into the nature of temporal coherence
that are very ubiquitous in the biological world. From a
physicist's point of view, the onset of MME seems to
resemble second-order phase transitions in equilibrium
cooperative systems. ' It is naturally important to exam-
ine to what extent such resemblance is true and to clarify
what features of the onset of MME are new in compar-
ison with equilibrium phase transitions. Seeking the con-

ditions of MME may be interesting in this sense as well.

The oscillators treated here are dissipative dynamical
systems exhibiting an attracting limit cycle whose period
is expressed as I/QJ for the jth oscillator. The dynamics
in large assemblies of such elements may be studied with

a variety of models, of which the simplest is the follow-

ing:

8, =n, + g h;, (8; 8, , e) (I(—j(N), (1)
iEIj

where 8I is the phase (divided by 2tr) of the jth oscilla-
tor, and 8j=d8J/dt The seco.nd term in Eq. (1) comes
from interactions of the jth oscillator with its "neigh-
bors" whose set is denoted by IJ. The coupling function

h;J is periodic with period one in its first argument, and
its second argument e is a parameter which typically cor-
responds to the coupling strength. Though sitnple, this

type of model is often used to analyze several concrete
biological phenomena, ' not only in studies with em-

h,j ( —
tit, e) = —h;, (tir, e), (2)

which is a generalization of the sinusoidal nearest-
neighbor couplings as chosen by SSK'3 as well as some
other authors. Then, we show that the lower critical
dimension of MME, denoted by d, hereafter, obeys a
certain inequality depending sensitively on the category

phasis on the aspect of a phase transition. '2 9'3 [Re-
cently, the discrete-time version of Eq. (1) has also been
proposed and investigated to elucidate the dynamics in

populations of doubly periodic oscillators. '0 '2] In this

Letter, I am concerned with Eq. (1) subject to some re-
strictions on h;, described below.

Given a large assembly of oscillators, it may depend
on the type of interactions and the spatial dimensionality
whether the assembly can exhibit MME or not. For a
particular case of Eq. (1) such that each element is cou-
pled to all others in an equal way, several authors
demonstrated analytically and numerically the oc-
currence of MME beyond a certain threshold of the cou-

pling strength. ' ' Such models, however, may en-

counter an objection that they are not realistic enough.
Interactions between elements in biological populations
should typically be of finite range rather than of infinite

range as is the case with the models. Recently, Sakagu-
chi, Shinomoto, and Kuramoto (SSK) went a step for-
ward by considering a case of nearest-neighbor couplings
with h;J (8,e) =e sin2tt8, ' where the native frequencies

n, 's were assumed to be independent random variables
obeying a common normal law. On the basis of numeri-
cal simulations and some analytic arguments, they
claimed that in such populations, MME can only appear
when the spatial dimensionality d is larger than 2. Their
arguments, however, do not appear fully convincing be-
cause of a serious approximation as well as an assump-
tion of perfect entrainment invoked, as discussed in de-
tail elsewhere. " The purpose of this Letter is to shed
some light on this problem by way of a sort of real-space
renormalization-group analysis. ' For this, the couplings
of the oscillators are assumed to be spatially finite
ranged and bounded as long as e is finite, satisfying

1988 The American Physical Society 231



VOLUME 61, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1988

4k Qk™I
hij (Al 0k+ +lip, k,j e) (3)

(I'J I

where pk =—M 'g, 8 is the phase of the kth block oscil-
lator and Qk—=M p, Q, , and the summation in Eq.
(3) is taken for such pairs of (i,j) that the oscillators j
and i belong to the kth block and one of its nearest-
neighbor blocks, respectively (I assume L»1). The re-
sidual phase y is defined through 8j =p +ijf j when
the oscillator j is in the mth block. (Hereafter I put
N =~ and omit the range of k, 1 ~ k ~ ~.)

In order to go a step forward, let us pay attention to
the asymptotic behavior of the distribution function
f(Q) in the limit I Q I

~ which will turn out to be
crucial. Most generally, one may put

f(Q)~IQI ' ' (IQI»», (4)

with 0 & a ~ 2 unless f(Q) has finite variance. The ex-
ponent a is important to classify distributions. For f(Q)
with a finite variance such as the normal law, I put a =2.
I make use of the following fact: In the limit n 00, the
random variable Q„:—(p,"-i Q; —y„)/n'j' obeys one of
the stable distributions whose characteristic function is

essentially expressed as (exp(iz Q) =exp( —
I z I

'), pro-
vided that the constant y„ is appropriately chosen, where
the angle brackets stand for an average. ' ' [For exam-
ple, if a=2, the stable distribution is the normal one.
Actually, for f(Q) with a =2 but without a variance, the
denominator of Q„, n'j, has to be replaced by a con-
stant O((nlnn) 'j ). This fact, however, has no inffuence
on the result below, Eq. (8).] Hence, I perform a set of
transformations, ~=tM ' ' ' and pk =pk —(yet/M)t,
in Eq. (3) to obtain

djk/dr=Qkt k+Mt' g htk(jt jk, e), —
I 6 Jk

(5)

where p—:1
—a ' —d ' and Jk is the set of blocks

nearest to the kth. The effective coupling function htk is

of the distribution f(Q) shared by natural frequencies
that are independent random variables. This result is

consistent not only with SSK's claim for the class of
f(Q) treated by them, but also with my own numerical
simulations. At the end, I support the result in part by
proving the absence of long-range order for a case of
one-dimensional populations.

Now suppose that the whole d-dimensional lattice is

divided into a set of hypercubes with an equal linear
scale L (hence one cube contains M=L—sites). For
each of such hypercubes, let us imagine a single
representative oscillator such that its phase p is given by
an average of the phases of all oscillators located in the
hypercube or the block. I term such an imaginary oscil-
lator a block oscillator which is analogous to the Ka-
danoff block spin. ' ' The dynamics of the population
of block oscillators may be determined by the following
equations:

defined by

htk(y, e) =M ' h;j(&+pi; —
pk j,e), (6)

i,j)
which is at most O(1) with respect to M.

The procedure of deriving Eq. (5) from Eq. (1) may
be regarded as a sort of renormalization-group (RG)
transformation. The renormalized evolution equations
for the assembly of block oscillators reveal that in the
limit L ~, every system with the form of Eq. (1) is at-
tracted to a trivial ftxed point of the RG transformation:

dqkld. = Qk, (7)
A

provided p & 0 where Qk =limM Qkt k obeys a stable
distribution with the characteristic exponent a. There-
fore, it follows that

d, ~ a/(a —1) (1&a~2), (8)

and furthermore that for 0& a~ 1, no MME (long-
range order) arises in any finite number of dimensions.
(For discrete-time systems, a similar analysis will be
made elsewhere. ' )

Since SSK assumed the existence of a variance, their
f(Q) is in the class of a =2, for which our result (8) is

consistent with their proposal. The above results reveal
that large variations of the native frequency over the
whole population, which are enhanced by decreasing a,
have a drastic effect on the critical dimension d, . Of
particular interest may be the absence of MME in any
finite number of dimensions for such a frequently used
distribution as the Lorentzian ' ' whose a is 1.

It is also suggested by the theory that in three dimen-

sions, no MME occurs for a & —,'. As a test of the
theory, I have performed numerical simulations to check
this prediction. For cubic lattices under periodic bound-

ary conditions, I solved Eq. (1) by approximating 8j with

[8j((n+ 1)h ) —8j (nh ) l/h (h =0.05) in the case of
nearest-neighbor couplings of the form h;j = (e/2n)
x sin2n(8; —8 ) and the distribution of Q j such that
f(Q)=a-Q (IQI~0.1) or AIQI ' ' (IQI
~ 0.1), where the constants a and A are fixed by the
continuity of f(Q) at Q =0.1 as well as a normalization
condition. 20 A sequence of uniformly random numbers
was used as 8j(0). Then, for I =80192 steps after an in-

itial 2000 ones discarded as a transient, I computed an

average of 8j,coj, for 1 ~ j~ N to divide the whole pop-
ulation into clusters of mutual entrainment where

I to; —toj I
& I/2lh was used as a criterion of entrainment

for oscillators i and j, following S K. ' Figure 1 shows
how the ratio of the largest cluster size to N, denoted by
R, varies as e is increased, where the data are averaged
over 6, 3, and 3 samples of [Q&l for N =8, 16, and 32,
respectively. As is seen, for a=1.7 (& —', ), the data
seem to converge for increasing N, suggesting a phase
transition at a finite threshold in the infinite system,
while for a =1.3 and 1.1 ( & —,

' ), the curves tend to de-
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FIG. 1. R vs e for (a) a=1.7, (b) 1.3, (c) 1.1, where N is

8 (plusses: leftmost), 16 (triangles: middle), and 32
(squares: rightmost).

to, =o, +a, —a, -t (1~j&N), (10)

where aj is a long-time average of hj(8j+~ —8j,e). It is

easy to derive from Eq. (10)

cay without convergence as N grows, in accordance with
what is expected from the theory. Clearly, these results
are still not sufficient: Further simulations for larger N
as well as a closer to -', remain to be attempted.

Let us now focus on a particular one-dimensional
(1D) version of Eq. (1) as follows:

8j = Qj+hj(8&+i —8j,e)+hj 1(8j—1

——8j,e)

(1~j~N),
with h, satisfying the same prerequisites as before. Ac-
cording to the RG theory, long-range order cannot be ex-
pected in this type of system since d, ~ 2, regardless of
a. In what follows, I attempt to directly prove this for
f(Q) with a finite variance since otherwise f(Q)
possesses an infinite tail(s), rendering the proof easy (as
is intuitively expected" ). My basic assumption is the
existence of the limit to, =limt [8,(t) —8, (0)]/t for
all j. (However, uniqueness of the limit is not needed. )
A sequence of neighboring oscillators is called a cluster
when they share a value of ro. My goal is to show that
the probability of finding a cluster with the size O(N)
vanishes for N~ ~, as long as e is finite.

Proof. —I begin with

form a cluster of mutual entrainment, where sj = —1

(I ~j ~n/2) or 1 (n/2& j~n). Therefore, a neces-
sary condition for the appearance of such a cluster is

~ gjn-tsjOk+j ~
& 4C (where C is a constant such that

~ hj ~
& C) whose probability, P„, may be given by

(2/tr) ' (4C/cr) n (1 1)

when n is large, where o is the variance of f(Q). Let
us now consider a macroscopic cluster with the size /jN
(0 & P & 1) which may be divided into a set of subclus-
ters each of which has the length PJN. With this fact in

mind, I arrive at Qtv(P) & N(Pttgtv )~, where Qiv(P) is

the probability for a cluster with the length PN to be
found. By (11),Qiv(P) vanishes as N ~ QED.

In summary, my RG analysis based on the concept of
"block oscillator" has led to the inequality (8) of the
lower critical dimension for MME in the class of popula-
tions of oscillators as in Eq. (1) when 1&a~2, while it
reveals the absence of MME in any finite number of di-
mensions for 0&a~ l. My numerical simulations for
3D cubic lattices seem consistent with this result. A
proof has also been given for the absence of MME in one
dimension.

In this Letter, as a distribution of native frequencies, I
have been concerned not only with distributions carrying
a finite variance, but also with ones whose variance does
not exist. At first sight, the latter appears to be much
less relevant scientifically than the former. Recently,
however, such "anomalous" distributions tend to become
popular in connection with fractals. ' ' ' They may be of
practical importance in the context of population dynam-
ics as well. If this is indeed the case, my result is very
important because it reveals that the absence of long-
range order in real systems (whose dimension is not
larger than three) accompanied by a distribution with
a & —', . This sensitivity to the tail of f(0 ) may be
viewed as one of unique features of phase transitions in

oscillator assemblies. My result is also expected to be
useful in other areas beyond the biological context, e.g. ,
in the study of coupled oscillating electric circuits. As
stated earlier, however, further numerical simulations
with greater accuracy are necessary to give more con-
vincing support to the theory. Moreover, it should be
asked what happens if the coupling functions do not
meet the restrictions, e.g., (2). Needless to say, it is the
value of d, itself that has to be ultimately clarified. Al-
though these remain to be done, I hope that this work
will stimulate investigations in this field towards a com-
plete understanding of the new type of critical phenome-
na.

Comments by H. Sakaguchi and S. Adachi are grate-
fully acknowledged.
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