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We present the wavelet transform as a mathematical microscope which is well suited for studying the
local scaling properties of fractal objects. We apply this technique to probability measures on self-
similar Cantor sets and to the golden-mean trajectories on two-tori at the onset of chaos.
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Most previous characterizations of multifractals '
have brought a global description of the scaling proper-
ties through the determination of the continuous spec-
trum of scaling indices a and their densities f(a). Al-

though the f(a) spectrum is closely related to the gen-
eralized fractal dimensions Dq, it is unfortunately
powerless to describe the spatial locations of these singu-
larities. An analogous situation is faced in signal
analysis, where power spectra extracted from recorded
time series suffer from a similar deficiency. The power
spectrum identifies the underlying frequencies and
quantifies their relative contributions, but says nothing
about their temporal locations. In recent analysis of
seismic data and acoustic signals, the Fourier transform
has been supplanted by a transformation which gives a
representation of the signal as a function of both time
and frequency: the wavelet transform. The purpose of
this Letter is to introduce the wavelet transform as a nat-
ural tool for investigating the self-similar properties of
fractal objects at different length scales.

The wavelet transform consists of expanding functions
over wavelets which are constructed from a single func-
tion g by means of dilations and translations. Let us
consider a fractal represented by a real function f; let g
be a regular complex-valued function that is localized
around zero and some of whose moments are zero [g
should be at least of zero mean: Jg(x)dx =01. Then
the wavelet transform of f with respect to the wavelet g

is defined as

T(a,b) — g f(x)dx, a &0, b c %.1 x —b
a4 a

This transformation can be seen as a mathematical mi-

croscope whose position and magnification are b and 1/a,
respectively, and whose optics are given by the choice of
the specific wavelet g. No information about f is lost
since this transformation is invertible for a large class of
functions5 f. For a fractal measure dm(x), we define its
transform as

T(a, b) - g
1 x-
n4 a

dm(x), a &0, b F R, (2)

where the normalization factor I/a" may be chosen to
best reveal the scaling structure of the fractal measure
under consideration.

Scalings and ~avelets. —A typical property of frac-
tals is that they are asymptotically self-similar at small
length scales. Thus, looking near an arbitrary point xo
at different scales, we always find the same function up
to a scaling factor. Defining f„,(x) =f(xp+x) —f(xp),
then we have

f„,(X )-xZ'"'f„,( ).x
For a wavelet which decays sufficiently fast at infinity,
this scaling behavior of f is mirrored by the wavelet
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transform which scales like (a)

T()a, x. p+).b) =) "' T(a,xp+b), (4)

i.e., with the same exponent a(xp) as f. Therefore, every
local singularity off produces a conelike structure in the
wavelet transform pointing towards the point (a=0,
b =xp) at the border of the half-plane where this singu-
larity of type a is located. ' A fairly general theoretical
result is that a high regularity of the function is reflected
in the wavelet transform by a rapid decay of the
coefficients T(a,b) in the limit a ~ 0+. A straightfor-
ward integration shows that the local scaling exponent
a(xp) of dm(x) turns into an exponent a(xp)
=a(xp) n —in the wavelet transform, where n is the nor-
malization exponent in Eq. (2).

Usually, relation (3) will not hold for all k c % but
rather for an infinite sequence X -P, m 6 Z. Hence-
forth, the exponent a is complex and the fractal shows
oscillatory scaling behavior. In the wavelet transform,
oscillations of period InP exist around a straight line with

slope a when ln
~
T(a,xp) ~

is plotted versus lna. Similar
periodic oscillations have been found in the log-log plot
measurement of the Renyi dimensions of highly self-
similar Cantor sets.

In this Letter we use a real wavelet g of Gaussian
type: g(x) =(1—x )exp( —x /2) to investigate some
fractal invariant measures of well-known dynamical sys-
tems. We choose the rescaling exponent in Eq. (2) equal
to n =2, such that in all examples we shall consider, the
local singularities will correspond to a power-law diver-

gence of the wavelet transform T in the limit
a 0+ (a&0).

Probability measures on Cantor sets Asim. —pie ex-
ample is the standard triadic Cantor set. We initially
divide the unit interval [0,1] in two intervals each of
length I i~ -l2- —,

' . These intervals receive, respective-

ly, the probability p& and p2 with p& ~ p2. At the next
stage of the construction of the measure, this same pro-
cess is repeated on each of these two subintervals. The
spectrum of singularities of this measure can be under-
stood with use of the technique of "kneading sequence. "'
Any point of the Cantor set can be addressed by an
infinite sequence of symbols L and R where L (left) la-
bels the interval with maximal probability p& and R
(right) labels the interval with minimal probability p2.
Clearly, the sequence LLLL. . . is associated with the
singularity a;„=—lnp ~/In3, while the sequence
RRRR. . . is associated with the singularity a,

„

= —Inp2/ln3. Other more complicated kneading se-
quences yield a values which range between a;„.and
&max-

In Fig. 1(a), we show an overview of the wavelet
transform of the uniform triadic Cantor set with

p] =p2 =
2 . The successive pitchfork branchings ob-

served when increasing the magnification (1/a) provide
an instructive illustration of the construction process of

.,5
/

(b)

FIG. 1. The wavelet transform [sgn(T)
~
T(a, b)

~

'~ I of the
triadic Cantor set with (a) uniform measure p~ =p2= —,', and

(b) two distinct measures p~ —,', p2 f; the scales in (a) and

(b) are diff'erent and n 2 in Eq. (2).

the Cantor set. The positions of the local singularities of
the measure are easily identified as spatial points b*
where the wavelet transform displays an oscillatory (with
period P=ln3) power-law divergence. Each of these
points is a point of the Cantor set. At each of these
points, the power-law exponent is a(b ) =ln2/ln3 —2,
which corroborates the theoretical prediction' that all
the singularities have the same strength a =ln2/ln3 with
the density f In2/ln3. The Legendre transform of this
spectrum confirms that the uniform Cantor set is self-
similar with dimensions Dq -In2/ln3, for all q.

In Fig. 1(b), we show the wavelet transform of the
fractal measure generated with p~ = —,

' and p2= —,'. Al-

though the support of the measure is the same geometri-
cal object as in Fig. 1(a), a simple visual inspection of
the wavelet transform allows us to differentiate the
nonuniform from the uniform Cantor set. While the
power-law divergence of T still clearly indicates the loca-
tion of the singularities at the points of the Cantor set,
the power-law exponent is obviously no longer unique
and is actually found to range between a;„
= —lnp ~/In3 —2 (b =0) to a~,„=—Inp2/ln3 —2
(b = I ). Again this numerical result confirms the
theoretical predictions' of the existence of a finite range
of scaling indices a E[am;„,a,„],-with additional infor-
mation concerning the spatial location of each singulari-
ty. In Fig. 2, we have cut the half-plane along b =b*,
where b* is the point which corresponds to the kneading
sequence RRRRRRRRLLLL. . . LLL. . .; when plotting
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FIG. 2. ln
I T(atb b*)

I (arbitrary scale) vs Ina for the
nonuniform Cantor set where b* corresponds to the kneading
sequence RRRRRRRRLLLL. . . LLL. . . .

(b)

lnI T(a, b ) I vs lna we find a value of a c [a;„,a,„).
Indeed, a crossover effect is observed from the exponent
a,„atlarge scale to the exponent a;„atsmaller scale
because of the tail of L's. We note that the period of os-
cillations is again P=ln3=lnl ' which attests that, up
to a scaling factor, the fractal measure is invariant under
dilation of the length scale by a factor P =l ' 3 in the
neighborhood of b*.

Quasiperiodic trajectories at the onset of chaos —The.
transition from quasiperiodicity to chaos is commonly
modeled by circle maps such as the sine map

0;il =fg n(0;) 0;+ 0 —K/2tr sin(2z8;) . (5)

Recently, a numerical investigation of the critical sine

map for EC=1 has revealed the universal properties of
the spectrum of singularities f(a) of the golden-mean

trajectory with winding number 8'=W =(J5 —1)/2.
The associated invariant measure develops a whole spec-
trum of singularities with scaling indices in a finite range
0.6326. . . ~ a ~ 1.8980. . . giving rise to nontrivial di-
mensions D~ and spectrum f(a).

Figure 3(a) shows the wavelet transform of the
golden-mean trajectory which displays structure at all
scales. The a dependence of T(a,0) yields the exponent
amax=amax 2, where amax=lnW /[nagm matches the
renormalization-group predictions' based on Shenker's
remark that the distances around 8 =0 scale down by a
universal factor ag =1.2885. . . when the trajectory is
truncated at two consecutive Fibonacci numbers F„,
F„+&.This local self-similarity shows up through small
amplitude periodic oscillations around this slope with

period P lnag . In Fig. 4, we have performed the same
analysis at b 0*(K = I ) [0*(K) is such that
W=S'*], i.e., at the first image of zero. The slope is
now a;„=a;„—2 where am;„ lnW'*/[nas is the local
exponent. This can be deduced directly from a,„be-
cause of the cubic nature of the inflection point of

FIG. 3. The wavelet transform [sgn(T) I T(at b) I

't
1 of the

golden-mean trajectory calculated with the sine map (5) for
(a) K 1 and (b) K 0.9 [n 2 in Eq. (2)].
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FIG. 4. The wavelet transform ln I T(aat, b =b*)
I vs lna of

the critical golden-mean trajectory calculated with the sine

map (5) for 0 0, K=1, and b =f», „~(0) tl*. The
golden-mean trajectory has been approximated by the super-
stable &25 cycle (W, =F„/F„+i)which explains the trivial
slope a —n = —2 observed at small scales.

f~,„.at zero. ' In the inset of Fig. 4, the slope has
been subtracted to reveal the oscillations of period
P [nas which reflect the scaling properties in the
neighborhood of every iterate of zero. In Fig. 5, the
wavelet transfortn of the critical golden-tnean trajectory
is shown in a two-color representation: The black re-
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FIG. 5. The wavelet transform of the critical golden-mean
trajectory calculated with the sine map (5) for K 1. The
black (T & T) and white (T~ T) coding is obtained when

defining on each a=constant line a threshold T b maxT(a, b)
(b & 0).

gions correspond to T & T, where the threshold T is
defined in proportion to maxT(a, b) ()0) on each a =
constant line in such a way that the white cones point to
the dominant singularities situated at the images of zero.
The most prominent cones define the F„iterates of zero;
they actually accumulate at zero in an alternating
geometric progression governed by the exponent as .
Each one of these white cones is itself an accutnulation
limit of white cones (the F iterates of the F„iterates of
zero) but with a different convergence rate as because
of the cubic inflection point. This hierarchy of white
cones continues at smaller and smaller scales; it is at the
heart of the renormalization-group analysis of this tran-
sition to chaos. We inention that when defining the
threshold T with respect to minT(a, b) ( & 0), one can
identify in the same way the weakest singularities locat-
ed at zero and its inverse images. Then the main white
cones corresponding to the F„inverse images of zero will

converge in an alternating geometric way to zero at rate
as, while secondary white cones will accumulate to the
main white cones at the same rate a~ and so on.

For E & I, the sine map f»„.(tr) is a diffeomorphism
which is analytically conjugate to a pure rotation. The
generalized fractal dimensions are invariant under a
smooth coordinate change; this implies that Dq = 1.
Indeed, the invariant measure has no singularities and so
the scaling is trivial with a single index a=1. In Fig.
3(b), we show the wavelet transform computed for

K =0.9; the large scale behavior is mostly unaffected by
this deviation from criticality. The structures which
emerge at large scales are progressively smoothed out at
small scales and

~
T(a,b)

~
unescapably decreases to

zero in the limit a 0+. Henceforth, the complex
hierarchy of white cones observed at criticality in Fig. 5
disappears at small scales. This loss of structure occurs
at larger and larger scales as K is decreased, i.e., as the
departure from criticality is increased. This crossover
behavior from an invariant measure which retains
memory of its critical properties at large scales, to a non-
singular invariant measure at small scales is analogous to
crossover effects observed in phase transition phenomena
near to critical points. It can be understood with use of a
renormalization-group approach as a crossover from a
strong-coupling (E= I ) to a weak-coupling (K =0) fixed
point.

In summary, we have pointed out that the wavelet
transform is able to capture the full complexity of the
self-similar properties of multifractals. Since its im-
plementation on a computer is not excessively time con-
suming and does not require enormous storage, the wave-
let transform provides a very efficient tool for analyzing
fractal objects. Its application to a variety of physical
situations, such as percolation, growth phenomena, and
fully developed turbulence, looks very promising.
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