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Comment on "Ground-State Energy of Heisenberg
Antiferromagnet for Spins s z and s I in d I
and 2 Dimensions"

In a recent Letter, Mattis and Pan' used a real-space
renormalization-group (RSRG) technique to estimate
the ground-state energy of Heisenberg antiferromagnets
of spin 2 and 1 in both one and two dimensions. In this

Comment, I point out an error in their calculations for
the case of spin 2 on a square lattice. This error invali-

dates their proof of antiferromagnetic long-range order
for this case.

The first-order RSRG that Mattis and Pan used pro-
vides a strict variational upper bound e~ to the ground-
state energy eo. Unfortunately, this bound is usually
quite loose (for example, the bound is more than 10% too
high for the one-dimensional spin- —, Heisenberg model

using 3-spin clusters. ) One would expect that in the
two-dimensional case, surface effects would be larger
than in one dimension and that the bound would be even

looser, so Mattis and Pan's extremely tight upper bound
of e+ = —0.67228 is very surprising, as they point out.

I had independently performed the same calculation
that Mattis and Pan describe on 3X 3 clusters and ar-
rived at different results. To reconfirm my calculation, I
used two independent and well-tested computer pro-
grams. My results, using Mattis and Pan's notation and
units, are Eo(3) —4.7493273, A =0.5067635, and

e+ = —0.5591886. This upper bound is quite loose, as
expected. Note that A (1, so Mattis and Pan's proof
of long-range order is invalidated.

It should be recalled that a similar calculation has
been performed on the spin- —,

' Heisenberg model on the
triangular lattice using 7-spin clusters. There, the
RSRG again provides the strict, but loose, upper bound
of e+ = —0.45506 J, which should be compared with the
more recent bound of e+ = —0.5367 J found by Huse
and Elser.

RSRG calculations can provide significantly more ac-
curate estimates when the calculation is taken to higher
order in a perturbation expansion which uses the inter-
block interaction as a perturbation parameter. The cal-
culations can also be improved by retaining more levels

at each truncation of the basis. I will report at more
length on improved RSRG calculations for quantum an-

tiferromagnets in the future.
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