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Magneto-Optical Properties of Highly Anisotropic Holes in HgTe/CdTe Superlattices
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Far-infrared magneto-optical experiments have been performed on a p-type HgTe/CdTe superlattice
with a small effective band gap. The angular dependence of the hole-cyclotron-resonance spectra reveals
that the effective mass is 2 orders of magnitude heavier in the growth direction than transverse to it.
These results provide evidence for a large valence-band offset. In addition, a tentative identification of
hole spin resonance has been made. Evidence is presented which shows that the superlattice band struc-
ture can be substantially modified by the application of modest magnetic fields.

PACS numbers: 71.25.Jd, 72.20.My, 73.20.Dx, 78.20.Ls

Experimental studies of free-carrier transport along
the growth direction in semiconductor superlattices have
been predominantly limited to high-electric-field-driven
tunneling of well-bound carriers through larger band-gap
barriers. It is only recently that GaAs/A1GaAs superlat-
tices were prepared which permitted the observation
of electron cyclotron resonance involving transport
through' (or specular reflection from ) the barriers. In
these experiments an electron mass anisotropy ratio
(effective mass along the growth direction divided by the
in-plane effective mass) of less than 2 was reported. '

Here we report magneto-optical measurements on a su-

perlattice composed of an inverted-band, zero-gap semi-
conductor, HgTe, and a large band-gap semiconductor,
CdTe. The experiments, performed in a magnetic field
regime where the semiclassical cyclotron orbit radius,
ro (ft/eB)'/, was substantially larger than the super-
lattice period of 127 A, showed well-developed hole-
cyclotron-resonance absorption lines for orbits both per-
pendicular and parallel to the growth direction. The
data yield a hole mass anisotropy ratio of 280. The re-
sults which are described below provide new insights into
this novel superlattice system.

The HgTe/CdTe superlattice studied here was one
member of a well-characterized set of samples. It was
grown by molecular-beam epitaxy on a (100) CdTe sub-
strate after the growth of a 4000-A. CdossHgo~sTe
buffer layer. The superlattice consisted of 200 double
layers of 78-A-wide Hg Te wells and 49-A-wide
CdossHgo ~sTe barriers. (Both the buffer layer and the
barrier layers contain about 15% HgTe because the Hg-
source shutter was open during the entire growth pro-
cess.) Conductivity and Hall measurements at low tem-
peratures indicated that the superlattice had an energy
gap of less than 5 rneV and was p type with hole density
of the order of 10' cm and hole mobility of nearly
300000 cm /V s at 4.2 K. Earlier far-infrared magne-
to-optical experiments were performed on an n-type su-
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FIG. 1. Faraday-geometry magneto-absorption data for the
HgTe/CdTe superlattice at 4.2 K. Since the spectra were
recorded with two different analog systems, they were redrawn
at 0.005 or 0.01 T intervals.

perlattice with different well and barrier thicknesses (or
different energy gap) with growth along a (111) direc-
tion. Thus the behavior we describe below was not ob-
served. The present experiments were performed with

use of far-infrared radiation from an optically (COq
laser) pumped molecular-gas laser and both supercon-
ducting and Bitter solenoidal magnets. The radiation
was directed by light-pipe optics onto an area of about 8
mm of the sample. The light-pipe system was placed in
a He-exchange-gas enclosure which was immersed in

liquid He. For selected laser frequencies, the transmis-
sion of the sample was measured as a function of mag-
netic field.

Figure 1 shows the magneto-absorption spectra for
three laser frequencies in the Faraday geometry where
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FIG. 3. Voigt-geometry magneto-absorption data for the
HgTe/CdTe superlattice at 4.2 K.

FIG. 2, A compilation of Faraday-geometry data for the
HgTe/CdTe superlattice. The solid curve was calculated as
described in the text. The dashed line, provided as a visual aid,
shows that the high-field line has a nonzero energy intercept at
zero field. The horizontal bar indicates the doubletlike behav-
ior in the 18-24-cm ' region.

the cyclotron orbit is parallel to the HgTe/CdTe layers.
Through the use of a circular polarizer at v=43.7 cm
(a linear polarizer followed by a quartz quarter-wave
plate) and a field-reversible superconducting magnet, it
was found that both of the absorption lines of Fig. 1 oc-
curred in the sense of circular polarization for which hole
cyclotron resonance is allowed. However, as will be
shown subsequently, only the lower-field line has been
identified as hole cyclotron resonance. Using the relation
t'troI„„=Illro, =eB,/m* at the resonant absorption field

B„we find that the effective mass, m*, of the hole sub-
band is exceptionally light, of the order of 0.0011m, . It
should be noted that even at resonant fields as low as
0.02 T (200 6), a cyclotron absorption line is observed.
This implies that co, r is comparable to 1 even at this low
field. By our fitting the data with Lorentzian line shapes,
the scattering time r is found to be 0.3 ps and the mobili-

ty about 300000 cm /V s. These results confirm the ob-
servation of high hole mobility in small-effective-gap
HgTe/CdTe superlattices and show that it is due to a
very light in-plane effective mass.

The data for the Faraday-geometry experiments are
summarized in Fig. 2. It should be noted that the high-
frequency, low-field line which has been identified as
hole cyclotron resonance shows substantial curvature
which is evidence of band nonparabolicity. For compar-
ison, the solid curve was generated by use of bulk k*p
theory with a momentum matrix element of 18.5 and a
spin-orbit splitting of 1.0 eV (suitable for bulk HgCdTe
alloys) and adjustment of the energy gap to 9 meV for
best fit. It is only provided to indicate the amount of
nonparabolicity. Critical comparison to theory requires
correlation with detailed magnetic-field-dependent su-
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FIG. 4. A compilation of Voigt-geometry data for the
HgTe/CdTe superlattice. The dashed lines are provided as
visual aids.

perlattice band-structure calculations.
Figure 3 shows magneto-absorption spectra for the

Voigt geometry where the cyclotron orbits require hole
transport through the superlattice barriers. (The orbit
diameter at 0.5 T is about 720 A compared to the super-
lattice period of 127 A.) In this geometry, the absorp-
tion spectra for EJ B and E IIB are found to be very
different. The low-field line is identified as a cyclotron
resonance transition since it occurs in the E&8,
cyclotron-resonance-active sense of polarization. Con-
versely the high-field line at 1.7 T in E II 8 is clearly not a
cyclotron resonance transition. (The weak structure at
0.5 T in E II 8 may be due to leakage of E~B radiation
through the linear polarizer. ) A compilation of Voigt-
geometry data is shown in Fig. 4. Whereas the E~8 cy-
clotron resonance transition varies linearly with field at
low frequencies and has a zero-frequency intercept at
zero magnetic field, the E IIB high-field line has zero
splitting at magnetic field of 0.7 T.
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In order to establish the relationship of the absorption
lines observed in the Faraday and the Voigt geometries,
the dependences of these lines have been studied as func-
tions of the angle between the magnetic field and the
growth direction. The position of the low-field line as a
function of angle could be modeled by our assuming that
the hole constant-energy surface was ellipsoidal. In this
case, the cyclotron-resonance effective mass is given by

ll/m, (8)] =cos 8/m„+sin 8/m„m, ,

where m„and m, are the effective masses in the super-
lattice layers and in the growth direction, respectively,
and 8 is the angle between the field and the growth
direction. As a result of band nonparabolicity, the mass
anisotropy m, /m„given by the constant-energy ellipsoid
decreases with increasing energy. To obtain a lower lim-
it on the mass anisotropy at the band edge, mass values
from the Faraday and Voigt data are selected from Figs.
2 and 4 at a photon frequency of 24 cm '. From these
values and the expression for m„, m, =0.30m, is ob-
tained with m, /m„of 280.

The experimental determination of a reliable value for
m, /m„has been shown to have significant implications
for the HgTe/CdTe superlattice band structure. This
relationship can be understood by consideration of an
unstrained, lattice-matched superlattice such as GaAs/
A16aAs. In this case, the band with heavy-hole charac-
ter along the growth direction lies higher in energy than
the band with light-hole character along the growth
direction. However, in analogy to stressed Ge, the
heavy-hole band has light-hole dispersion for motion in

the superlattice plane, i.e., m, /m„) 1, while the opposite
condition applies for the light-hole band, i.e., m, /m„( l.
Recent band-structure calculations for the HgTe/CdTe
superlattice have shown, however, that for small
valence-band offset of order 0-40 meV, the effects of
lattice-mismatch-induced strain raises the light-hole
band above the heavy-hole band. ' Calculations predict
that in the presence of strain a valence-band offset of
greater than 150 meV is required for quantum-well
confinement to raise the heavy-hole band above the
light-hole band. Therefore, since our mass-anisotropy
results demonstrate that the heavy-hole band is the top-
most valence band, our data support a large value for the
valence-band offset.

A possible explanation for the origin of the high-field
absorption line is suggested by Fig. 3. Intraband
magneto-optical studies of InSb have demonstrated that
free-electron spin resonance can be observed in the E II B
Voigt geometry for certain crystallographic orientations
of the sample with respect to the magnetic field. ' Un-
der these conditions, the normal magnetic dipole spin
resonance matrix element is substantially enhanced by
an electric dipole contribution due to inversion asym-
metry of the sample. " In addition, earlier observations
of electron spin resonance in HgCdTe alloys' and InSb

(Ref. 13) attributed the absorption to an electric dipole
contribution due to conduction-band nonparabolicity. In
these latter experiments, the transition was only observed
in the electron-cyclotron-resonance-inactive sense of cir-
cular polarization of the Faraday geometry. Since a
small-gap HgTe/CdTe superlattice has both dramatic
band nonparabolicity and enhanced inversion asymmetry
compared to a HgCdTe alloy, a strong spin resonance
line such as observed here is to be expected. For the
foregoing reasons, the high-field line is identified as hole
spin resonance. While g values of the order of 200 for
the Faraday geometry and 30 for the Voigt geometry can
be inferred from the data, it is obvious that the field-
dependent splittings in both geometries are complicated
and require additional experimental study. A recent cal-
culation of spin splitting in a superlattice predicts zero
splitting at finite field, ' as we observe in Fig. 4.

Another possible approach to understanding our re-
sults which should be considered is the phenomenon of
tilted-orbit cyclotron resonance. ' As observed in bulk
semiconductors with multiple ellipsoids not all aligned
with principal axes along the field direction, elliptically
polarized real-space currents lead to the breaking of the
usual cyclotron-resonance selection rules. In addition, as
the field orientation is changed, light-mass Fermi-surface
cross sections become heavy, and vice versa. However,
since we have observed no evidence for this tendency nor
for the tilted-orbit selection rules, this mechanism can be
ruled out. (Of course, our data at angles between Fara-
day and Voigt may have tilted-orbit selection rules. )

The strong band nonparabolicity and anisotropy ob-
tained from the hole cyclotron resonance and the anoma-
lous character of the spin resonance line position demon-
strate the importance of magnetic-field-dependent
band-structure calculations which include spin effects.
Theoretical in-plane dispersion relations at zero field"
predict that in small-gap HgTe/CdTe superlattices such
as the present one, the light-hole mass region extends
only over E(k„) 10-20 meV below the band edge. At
larger values of k„, the in-plane dispersion reflects a
much heavier mass. This prediction has been substan-
tiated by our failure to observe light-hole cyclotron reso-
nance above the CdTe restrahlen band (photon energies
of about 30 meV). In this spectral region, we observed a
series of intersubband transitions with heavy-mass be-
havior. We therefore looked for heavy-mass cyclotron
resonance at high fields and low frequencies. Starting at
about 5 T, a broad, strong electron absorption line
developed with m* =0.21m, at 10 T. In agreement with

theory, we conclude that free-carrier effective masses are
strongly affected by magnetic fields as low as 0.2 T and
that even qualitative features of the superlattice band
structure are profoundly modified by fields of 5-10 T.

Transport experiments on small-gap superlattices have
shown evidence for high-mobility intrinsic electrons at
temperatures as low as 15 K. Band structures calculat-
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ed for a 350-meV valence-band offset predict that the
zone-center electron and hole masses should be "mirrors"
of each other. When the present sample was heated to
about 20 K, two absorption lines appeared in the
electron-active sense of circular polarization at the same
field magnitudes as the previously described hole cyclo-
tron and spin resonances. However, the identification
that these lines are due to light electrons should be con-
sidered tentative because of the imperfect separation of
hole-active and electron-active cyclotron and spin reso-
nance transitions by the circular polarizer and because
the selection rules may depend on temperature.

In summary, the dispersion relations for a heavy-hole
subband in a small-gap HgTe/CdTe superlattice have
been established through the use of intraband magneto-
absorption spectroscopy. The measurements demon-
strate that the superlattice has highly anisotropic, 3D-
like dispersion. The anisotropy leads us to conclude
that large valence-band offsets are appropriate for
HgTe/CdTe superlattices. Detailed analysis of the data
requires magnetic-field-dependent superlattice band-
structure calculations which include spin.
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