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Fluctuation-Induced First-Order Transition of an Isotropic System to a Periodic State
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Small-angle neutron-scattering data, obtained from a near-symmetric isotropic diblock copolymer,
demonstrate non-mean-fiel behavior over a wide temperature range ( & 57 'C) above the weakly first-
order microphase-separation transition. These results are quantitatively explained by a fluctuation
theory based on the Hartree approximation employed by Brazovskii to describe such phase transitions.

PACS numbers: 64.60.Cn, 61.12.Ex, 64.70.Dv

Numerous interesting condensed systems possess
phase transitions between a spatially homogeneous phase
and a periodic ordered phase with broken rotational and
translational symmetry. The most familiar example of
such a system, and one in which the transition is strongly
first order, is the crystallization of a simple liquid. There
are other equilibrium systems, however, in which the
phase transition is believed to have a weak first-order
character' and are those relevant to the present study.
Examples of such systems include weakly anisotropic an-
tiferromagnets, the isotropic-cholesteric and nematic-
smectic C transitions in liquid crystals, 4 pion conden-
sates in neutron stars, and block copolymer melts. '

Additionally, certain pattern-forming nonequilibrium
systems exhibit transitions of a similar nature.

A characteristic feature of the above systems is that
they possess an inherent (or experimentally accessible)
symmetric point at which the cubic coefficient in an ap-
propriate Landau theory vanishes, resulting in the
mean-field prediction of a second-order (continuous)
transition. Various treatments of order-parameter fluc-
tuations, however, have demonstrated that the continu-
ous transition is an artifact of mean-field theory and in-
dicate the presence of a fluctuation-induced first-order
phase transition at a temperature lower than the mean-
field critical temperature. ' In a seminal paper, Bra-
zovskii introduced a simple model Hamiltonian to de-
scribe such behavior. For the case of a one-component
order-parameter field, p(q), and at the symmetric condi-
tion, the Hamiltonian can be written (d =3)

dq dq( t dq2 dq,
H[y] =— [z+(q —q')']y(q)y( —q)+—

2!" (2n) 4' " (2tr) " (2tr) " (2tr)
O(qi) O(q2) e(q3) e( —qi —

q2
—'q3»

where z is proportional to the distance from the mean-
field critical temperature and X )0 is a coupling
coefficient that must be computed from a microscopic
theory for the particular system of interest. Unlike con-
ventional antiferromagnets, where the underlying lattice
plays a role in selecting the low-temperature periodic
phase, isotropic systems describable by Eq. (1) condense
to a spatially periodic state with reciprocal-lattice vectors
that are selected from the continuous surface

~ q ~

=q*.
Brazovskii showed that field fluctuations become singu-
lar in amplitude as z 0, but that for sufficiently weak
coupling (small ti, ) these singularities can be controlled
with a self-consistent Hartree approximation. His
analysis predicts a fluctuation-induced first-order phase
transition to a one-dimensional (lamellar) periodic struc-
ture at a temperature z, ——[(q*) X, ] I . Renor-
malization-group calculations on a model similar to Eq.
(1) suggest the lack of a stable fixed point in three di-
mensions and are thus consistent with Brazovskii's re-
sults.

In spite of these interesting predictions, there has been
limited experimental work on such systems. Lowering of
the transition temperature has been observed in studies
of cholesteric liquid crystals'0 and in several experiments
near the nematic-smectic C boundary. Although there
is strong evidence that the transition is weakly first order
in such systems, we are unaware of any quantitative test
of Brazovskii's theory.

It was pointed out by Leibler that Brazovskii's theory
should be applicable to A-8 diblock copolymer melts.
An A-8 diblock copolymer is a linear (flexible) polymer
that consists of a linear chain (i.e., block) of A polymer
attached to a block of 8 polymer. At sufficiently high
temperatures, bulk diblock copolymers exist in an isotro-
pic, disordered phase, while various ordered structures
(e.g. , lamellar, hexagonal, cubic) arise at low tempera-
tures (see Fig. 1). The lattice constants in such periodic
phases scale with the copolymer radius of gyration
[Rs =a N/6, where a and N are the length and number
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FIG. 1. Schematic illustration of ordered (lamellar) and
disordered A-B diblock copolymer. The solid and dashed seg-
ments correspond to sequences of 2 and B repeat units. Also
shown is the molecular structure of the PEP-PEE diblock copo-
lymer discussed in this work.

FIG. 2. Temperature dependence of the low-frequency dy-
namic elastic modulus for sample PEP-PEE near the weakly
first-order MST. An uncertainty of + 1 'C in TMsT =125 'C
(shaded area) derives from the temperature resolution of the
rheometer.

of block copolymer statistical (Gaussian) units] and,

thus, can be as large as several hundred angstroms.
Which ordered phase is selected depends primarily on

the volume fraction, f, of component A. The symmetric
point described by Eq. (1) corresponds to the case of

f —,'; here p(q) represents fluctuations in composition

about f. For future reference, we note that the order-
disorder transition in block copolymers is traditionally
referred to as the microphase separation transition
(MST) '

In this Letter we present, to our knowledge, the first

experimental test of Brazovskii's theory. In particular,
we report small-angle neutron-scattering (SANS) and

dynamical-mechanical experiments on a nearly sym-

metric model A-B diblock copolymer and compare the
results with a recent application of Brazovskii's theory to
the case of block copolymers.

A PEP-PEE [poly(ethylene-propylene)-poly(ethyl-
ethylene)] diblock copolymer containing a partially deu-

terated PEE block was prepared and characterized as de-

scribed elsewhere "; an illustration of the PEP-PEE
structure is given in Fig. 1. The overall molecular

weight, polydispersity, and PEP volume fraction are,
Mn =57500, M~/M~ =1.05, and f=0.55, respectively

We have determined the MST for this sample using a
Rheometrics System IV rheometer operated in an oscil-

latory mode with a cone-and-plate geometry. As de-
scribed elsewhere, ' the low-frequency rheological prop-
erties of amorphous diblock copolymers are strongly
dependent on the phase state, thereby providing a sensi-

tive method for the determination of the MST. Figure 2

illustrates the temperature dependence of the dynamic
elastic modulus, 6', for the PEP-PEE copolymer at a

particular low frequency of 2.5 sec '. The distinct
discontinuity in G'(T) at 125 ~1'C identifies the MST;
the full frequency dependence of the modulus, which
closely resembles that reported previously for another
copolymer, ' will be reported separately. '3

SANS data were obtained for the PEP-PEE sample
with use of the 8-m instrument at the National Bureau
of Standards. ' Experiments were conducted with 8.0-
A wavelength (A) neutrons (AA/A =0.25) and a pinhole
collimation geometry. Scattering cell preparation fol-
lowed previously described procedures. '5 The sample
cell was contained within a large, temperature con-
trolled, copper block fitted with a thin copper window. A
thermocouple, mounted in the scattering cell, was used
to monitor the sample temperature (+ 0.2'C). The az-
imuthally symmetric two-dimensional scattering patterns
were reduced to one-dimensional form [intensity verses
scattering wave vector, q =4+A 'sin(8/2), where 8 is
the scattering angle] in units of absolute scattering inten-

sity (cm '), following established procedures. ' Three
sets of representative SANS results, obtained at temper-
atures above the MST, are presented in Fig. 3.

The coherent elastic neutron-scattering intensity from
a homogeneous fluid containing two distinct types of
scattering centers is given by

i(q) =. '(b, b, )'S(q),--
where b; and bj are the coherent scattering lengths per
unit volume v of scattering species i and j, respectively;
partial deuteration of PEE (see Fig. 1) introduces a
large difference between bppp and bppp for the present
sample. Leibler has shown that, within the random-
phase approximation, the structure factor for a disor-

2230



VOLUME 61, NUMBER 19 PHYSICAL REVIEW LETTERS 7 NOVEMBER 1988

0- &26.3 C

M 3

O

CT

2—
I

O

0
'I.O 2.0 2.5 30

&O~q, A"
3.5 4.0

FIG. 3. SANS results at three representative temperatures
above TMsT. Solid curves were calculated by convoluting Eqs.
(2) and (3) (dashed curve) with the instrumental resolution
function as illustrated for the T=126.3'C result in the inset.

dered diblock copolymer melt is given by

S '(q) =N 'F(x,f) —2g«, (3)

where g« is an effective interaction energy parameter,
F(x,f) is a function related to the correlation functions
of a noninteracting (Gaussian) copolymer chain, and
x (qRg) . F(x,f) attains a minimum at x x

(q Rs); expansion of Eq. (3) about x gives the
form of the quadratic coefficient in Eq. (1), where
T~N 'F(x,f) —2g, rr. We have fitted Eqs. (2) and
(3) to the disordered phase SANS data by adjustment of
g ff and Rs as shown by the solid curves in Fig. 3. These
calculations include corrections for instrumental smear-
ing, which primarily derives from the wavelength distri-
bution, as illustrated in the inset. The fitting procedure
allows us to extract the unsmeared peak intensity, I(q ),
which is plotted as inverse intensity against inverse tern-
perature in Fig. 4. Within mean-field theory, linearity
is expected in such a plot because g«=g, where g
(Flory-Huggins parameter) is linear in T for disper-
sion interactions, e.g. , hydrocarbons. ' The shaded re-
gion in Fig. 4 indicates the estimated systematic error in

I '(q ), which emerges from the uncertainty in abso-
lute intensity calibration. '

Examination of Fig. 4 reveals that I '(q*) is non-
linear in T ' over the entire experimental temperature
range above the MST. This result is in marked contrast
with binary polymer mixtures, which exhibit mean-field
behavior [i.e., I '(0) is linear in T '], except for a nar-
row range of temperatures near the critical point. '

Furthermore, the peak intensity at the M ST,
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FIG. 4. Reciprocal peak intensity obtained from the
(desmeared) SANS results; the shaded area identifies the es-
timated systematic uncertainty. The mean-field prediction
(x) was calculated from Leibler's theory (Ref. 6), while the
solid curve was obtained by a single-parameter fit (Ref. 17) by
the BLFH fluctuation theory (Ref. 7).

I(q )MsT 950~ 95 cm ', is significantly less than that
predicted by mean-field theory, I(q )MsT =7552 cm
Here we note that all our calculations include a small
contribution from a cubic term added to Eq. (1) in order
to account for the slightly asymmetric composition

(f=0.55) of the PEP-PEE sample. Within the con-
text of Leibler's mean-field theory, this modification
leads to the prediction of a weak first-order transition
[i.e., finite I(q )MsT] to a cubic phase for f& —,

' . Clear-

ly, the results shown in Fig. 4 are qualitatively incon-
sistent with the mean-field theory.

Recently, Fredrickson and Helfand have implement-
ed Brazovskii's approach to treat fluctuation effects in di-
block copolymers near the MST. The theory relies on
microscopic calculations of the coefficients in Eq. (1) by
Leibler; hence we refer to this treatment as the
Brazovskii-Leibler-Fredrickson-Helfand (BLFH) theory.
For the present case (f=0.55) a fluctuation-induced
first-order transition is predicted to occur at (gN)MsT
= 10.70+43.16N ', where the term containing
N=a N/U is the fluctuation correction to the mean-
field stability limit. Thus, the fluctuation corrections di-
rninish with increasing N and in the limit N~ ~ the
mean-field theory is exactly recovered. The BLFH
theory also provides values of f at which the lamellar,
hexagonal, and cubic phases can be directly accessed
from the disordered state. For the degree of polymeriza-
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tion considered here (N =9548), a disordered-to-
lamellar transition is predicted over 0.42+f50.58. In
fact, sample PEP-PEE exhibits such a transition; this
will be discussed is a separate report.

In the BLFH theory for the disordered phase the form
of Eq. (3) is preserved, except that g,a is renormalized
from the mean-field g and satisfies

@~a g —
3 C(f)N [N 'F(x*,f) —2g,a] '~2. (4)

20

Here, C(f) is a constant that depends weakly on compo-
sition, e.g. , C(0.5) =257 and C(0.55) =277. At the
order-disorder transition the peak height of the structure
factor is predicted to be

S '(q~)MsT=02008[C(f)U] N a

leading to I(q*)MsT=867 cm ' for sample PEP-PEE
(intersection of solid curve and dashed line in Fig. 4),
which within experimental error agrees with that deter-
mined by SANS.

We have compared the BLFH prediction for I(q, T)
[Eqs. (2)-(4)] with our experimental data based on the
usual assumption ' that g =AT '+ 8 (see previous
comment). By varying a single parameter (TMsT and

gMsT have been independently determined), the theoreti-
cal prediction (solid curve in Fig. 4) can be brought into
near coincidence with the SANS results, within the sys-
tematic experimental uncertainty. '

Among the various systems described by Eq. (I), di-
block copolymers may be the best suited for a careful
study of fluctuation effects. The experimenter has the
ability (through synthetic chemistry) to systematically
vary molecular weight, which governs the wavelength
and amplitude of the dominant fluctuations, and the
composition, f, which controls the symmetry of the un-

derlying ordered phase.
In summary, a small-angle neutron-scattering study of

a nearly symmetric model diblock copolymer has re-
vealed non-mean-field behavior over a wide temperature
range (~ 57'C) above the microphase separation tran-
sition (MST) temperature. The fluctuation theory of
Fredrickson and Helfand, based on the Brazovskii treat-
ment of systems exhibiting a weakly first-order transition
from an isotropic to a nonuniform state and on Leibler's

block copolymer Hamiltonian, quantitatively accounts
for the results.

We thank E. Helfand for stimulating discussions and a
critical review of the manuscript.
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