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The power spectral densities of turbulent fluctuations computed from Zakharov’s model are shown to
have unexpected structure which results from the coherent temporal evolution of cavitons. These spectra
have features in common with the spectra measured during ionospheric heating.
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Recently! we presented the first calculations of the
power spectrum, {|E(k,w)|?), of electric field (en-
velope) fluctuations in the Zakharov model? of strong
Langmuir turbulence which showed that under condi-
tions of strong to moderate ion-sound-wave damping a
major part of the spectral energy was contained in local-
ized states. In most applications, and in particular for
ionospheric heating experiments,’ the putative driving-
field intensities are in the strong turbulence regime. It is
then essential to understand how the observed spectra
are explained by strong turbulence theory.*

In this Letter we investigate the surprisingly detailed
power spectra observed in computer solutions of the Za-
kharov model and try to determine what can be learned
from these spectra about the dynamics of strong Lang-
muir turbulence. Again our simulations are based on the
Zakharov? model:

V-[i9,E+iv.cE+V?E—nE] =Ey - Vn, (1a)
(82n+2v;08,n —V?n) =V2|E,+E| 2. (1b)

We have used standard dimensionless variables>® and
have decomposed the total envelope field into its spatially
uniform part, Eo(z) =Egexp(—iwot), which we take to
be an imposed drive field—e.g., the ordinary mode of the
rf ionosphere heater’—and the nonuniform longitudinal
field E(x,z). The dissipation operators v, and v; which
are local in k space and the numerical methods of solu-
tion are discussed in Ref. 1.

The present study was motivated by the observations
of electric field power spectra, | E(k,®) |2, from single-
caviton-collapse events in weakly driven, two-dimen-
sional simulations' in which only one caviton at a time is
present in the simulation box.” Spectra for two values of
the wave vector are shown in Fig. 1 and have three quali-
tatively important features: (1) Essentially all the spec-
tral energy occurs for < wo(=0) 8; (2) there are well-
defined peaks in the spectrum; and (3) for increasing k
the spectrum broadens and the peaks in the spectrum for
more negative ® become relatively more important.
These spectra and those of Ref. 1 are similar to the
incoherent scatter radar spectra at early times in
low-duty-cycle experiment.® We would like to under-
stand what properties of the caviton evolution are

reflected in these spectra of isolated cavitons and how
these isolated-event spectra relate to a multicaviton sys-
tem. To study the time evolution of an isolated event as
it evolves from nucleation® to collapse to burnout we
have found it useful as in earlier work® to resolve E(x,?)
in terms of a complete orthonormal set of time-
dependent vector eigenfunctions e,(x,z), with eigenval-
ues A, (1), associated with the instantaneous density per-
turbation n(x,z). These satisfy the equation

V- () +V2=n(x,1)]e,(x,1) =0, )

with Vxe, =0 and fd3xe}-e,=&,, We then can write
E(x,t)=X,h,(t)e,(x,t) where the sum may include an
integral over continuum states. In a large system (such
as the ionosphere) with many cavitons, there are states
localized at a given site, say eo(x,z) localized at x =0,
which asymptotically describe the collapse at that site.
Since n(x,t) depends implicitly on | E |2, this may be
viewed as a kind of nonlinear eigenvalue problem which
goes over to the usual self-similar analysis of collapse. 10
If Ao <0, the amplitude ho(z) of this state evolves con-
tinuously from the nucleation stage to collapse.® On
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FIG. 1. Spectra, |¥(k,w)|?=k "?|E(k,0) |2, for D=2
isolated collapse events. Eo=0.8, v;=0.9|k|, m;/m.=1836,
wo=0; dashed curve, kx =4, k, =0, and solid curve, k. =8,
ky, =0. Inset: Solid line, negative frequency at maximum of
spectrum vs k =k,; dashed line, ion acoustic shift, | | =k.
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substituting this expansion in Eq. (1a) it follows that the
amplitudes k,(t) are coupled because of the time depen-
dence of n(x,t). For h, we have, neglecting dissipation,

ihy =00k, =S,—iZ [dxel (x,0) é,x,0h(D), ()

where S,=[d3xEq e} (x,t)n(x,t) and overhead dots
denote time derivatives. Note that the amplitude for a
state v is driven directly by the pump and is coupled to
other states v' as a result of the time dependence of the
eigenstates which derives directly from the time depen-
dence of n(x,t). Nonlocalized modes are excited
through this mechanism by the strongly time-dependent
density cavities resulting from the collapse of localized
states. Such nonlocalized modes show up as relatively
weak features in the spectra near the free Langmuir
wave frequency w~k? in Fig. 1 and in the spectra of
Fig. 3 of Ref. 1, but are relatively stronger during the
onset of turbulence. Despite the name which we gave to
these features in Ref. 1, they are not predicted by stan-
dard weak-turbulence arguments.

We have gained useful insight into the nucleation-to-
collapse evolution and its connection with the power
spectra by considering the scalar''''> Zakharov equa-
tions in which only spherically symmetric collapsing cav-
itons are allowed and the three-dimensional problem for
an isolated collapse reduces to one in which E(r,t) and
n(r,t) depend only on the radial coordinate r. This sca-
lar model has several properties in common with the
physical three-dimensional vector model of Eq. (1):
threshold and maximum growth rate for the modulation-
al instability, collapse scaling exponents, no threshold en-
ergy for collapse, and the failure of a density well to al-
ways support a localized eigenstate.

Spherical symmetry is imposed by our representing all

fields in terms of the Fourier modes sin(k;r), k; =xl/ro,
I1=1,2,..., with ro chosen large compared to a typical
caviton size. In these scalar studies we have observed for
vi(k)/k =0.9 that at the nucleation site, E (r,t) is dom-
inated by its projection, ho(z), on the localized ground
state eg(r,7). In nucleation e¢(r,?) remains localized; at
every time step eo(r,t) can be computed from n(r,z).
Here we will adopt a simplified model in which ho(z) is
evolved with neglect of the excited-state contributions
v'#0 in Eq. (3). The density evolves according to Eq.
(1b) with the ponderomotive force replaced by
V2| Eo+ho()eolr,0) | %

In Fig. 2 we show some typical results from the scalar
model driven by a spatially uniform field E at the plas-
ma frequency (wo=0). For a range of Eg, a stable nu-
cleation cycle is observed, with a complete cycle over the
interval 0 <t <t.. We expect that in a turbulent envi-
ronment of other such nucleation sites, the strict perio-
dicity of this cycle will be lost, but at a given site there
may be strong correlations over a few cycle times for
strong ion acoustic damping. We can isolate the collapse
events occurring at the spacetime points (x;,z;) defined
by local maxima of |E(x,r)|2 The multievent spec-
trum is given by the sum over N, events in the observa-
tion time;

Ek,0) =2 expi(kox; —wt;)6;(k,0) .

Even if the behavior of the single-event spectra &;(k,w)
is well approximated by the unique parameters of an iso-
lated event, as modeled by the computations discussed
above, the turbulent power spectrum | E(k,w) | ? still de-
pends in detail on the correlations between events. For
example, if one assumes that all events are independent
(uncorrelated) then the power spectrum reduces to its in-
coherent part X | 6;(k,w) | >=N.(| &k,w)|?. A reali-
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FIG. 2. Evolution of scalar caviton vs time for E¢=5.0, mi/m. =2%10% v;(k) =0.9| k|, wo=0. (a) Values of | E|? (solid line)
and n (dashed line) (at r=0). (b) Lowest eigenvalue Ao (solid line) and phase velocity ®o (dashed line); note the rapid decrease of
o for £ = 0.20 associated with collapse. (c) Amplitude | ko(¢) | % energy in ground state (solid line), and radius of collapsing state
80(t), defined as value of r =80(s) which maximizes r2|eo(r,t) | ? (dashed line).
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zation of | &;(k,w) | ? for the scalar model is constructed
by taking the temporal transform of the function
f@)=ho(t)eolk,t) for 0<t<t and f(t)=0 for
t. <t <T, where T is chosen to give the desired frequen-
cy resolution, and eg(k,t) is the spatial Fourier trans-
form of eo(r,2). In Fig. 3 such spectra are displayed.

Spectral peaks result from a modulation of the spec-
trum with an (angular) frequency period Aw=2n/At,,
where Az, is the caviton lifetime as measured by the
width in time of the total electrostatic energy pulse as
shown in Fig. 2. For ionospheric parameters'? we esti-
mate from our simulation that At. <<0.1 ms. The k
dependence in this model arises from the k dependence
of eo(k,t); for a localized state for ko> 1 we expect
eolk,t) ~88/2(1)expl —kdo(¢)].  For increasing k,
smaller values of 8y are favored and these correspond to
more tightly collapsed states with more negative frequen-
cies.

Let us assume that the early-time spectrum from
low-duty-cycle experiments® can be identified with the
incoherent average {| & (k,w) | ?) of single-event spectra.
In this averaged spectrum the individual spectral peaks
may be smeared out but it is reasonable to assume that
the half-power frequency width is approximately that of
the first and strongest maximum of the single-event spec-
tra. Application of this argument to the data of Djuth,
Gonzales, and Ierkic® in this regime—e.g., their Fig.
4—leads also to a value At,~0.1 £0.05 ms.

In the single-caviton-model calculations we find that
the electric field &(k,t) is phase locked to the pump field
with a relative phase which is insensitive to parameters
such as Ey and wo. If the fluctuations in the single-event
amplitudes &;(k,?) are assumed to be small than we can
write in the multicaviton case

|E(k,0) | 2= |pk,0) | X]| &k w)|?,

where p(k,0) =X expli (k- x; —wt;)] is the transform of
the spacetime density of caviton events. A possible
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consequence of this observation is that the strong peaks
in the observed incoherent scatter radar spectra, which
develop after several ms in low-duty-cycle experiments,’
are the result of the development of a correlated state of
spacetime events whose structure factor |p(k,»)|? has
sharp peaks. This correlation could arise from back-
ground density modulations, with wavelengths of a few
meters, developing in a few ms, which sensitively modu-
late the nucleation process. These modulations might
arise from background temperature fluctuations, not
treated by the model of Egs. (1), which are caused by
strong local turbulent heating. A measure of this is veg,
the effective absorption of the pump, which is at least an
order of magnitude greater than collisional absorption.

The observed!>'* altitude dependence of the plasma
line for given k and w is in accord with our model be-
cause localized states are not tied to the linear Langmuir
wave dispersion relation. We estimate'? that cavitons
should be most strongly excited near the first Airy max-
imum of the heater, not at the lower altitude where the
linear, photoelectron-enhanced Langmuir wave signal is
observed. The model is also consistent with the max-
imum scale of density fluctuations inferred by Birk-
mayer, Hagfors, and Kofman'%; cavitons for ionospheric
parameters would have spatial dimensions in the range
of 50-5 cm. In the simulations of Ref. 1 the spectrum
(|E(k,®) | ? was nearly isotropic as a function of the
direction of k for E¢> 1.0, v; =0.9; we find a similar
isotropy'> when the geometric field By is taken into ac-
count. This appears to be consistent with observations*
and contrasts with the weak-turbulence prediction'® of a
ratio of about 10 ~* between fluctuations with k at 45°
from By compared to k parallel to By.

The Fourier transform to 6 (r,t) is given by

6(k,0)= [ drexplilor + o)1} | ho() [ eolk, 1) ,

where @ is the phase of h¢(z). For large negative w we
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FIG. 3. |E(k,0)|? for the scalar model for parameters of Fig. 2; (a) spectrum of event in Fig. 2 for k =12.0 and (b) spectrum of

event in Fig. 2 for kK =40.0.
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can make asymptotic estimates based on a stationary-
phase evaluation of the time integral; the stationary-
phase points t=t;, occur approximately where o
= —dy(z;). From Fig. 2 we see that the ground state
has large negative phase velocities where @¢(z)
— —Ao(#) as t— t, and can satisfy the stationary-phase
condition. In this temporal regime one comes closest to
the self-similar scaling for the collapsing state eo(r,t)
=680(t) "2/2w((r/5¢(1)), with the spatial Fourier trans-
form eo(k,t) =80(t) /2 fdeexp(—ik&oE)Wo(E).  The
self-similar behavior is'® 8o(z) ~ (z, — 1) ¥P~no(z) ~'/2,
where ¢, is the collapse time. Using these behaviors in
the stationary-phase evaluation of the Fourier integral
we find the asymptotic behavior |E(k,w)|?
~|w| ~U*3P/Y a5 4— —oo. This asymptotic predic-
tion is observed in the D =2 vector Zakharov simulations
and in the scalar simulations to an accuracy of 10%.

Individual caviton spectra at a given spatial location
within a caviton, | E(x,®) |2, could be measured in prin-
ciple in experiments such as those of Wong and
Cheung.'® Our calculations'? show many of the same
features as seen for | E(k,w)|?, including a modulation
at Aw =2r/At, and an asymptotic regime for large nega-
tive » where |E(x,0) | 1~ || =10/

This strong turbulence model does not depend on
linear parametric instabilities except perhaps for the ini-
tial excitation from quiescent conditions—a few ms in
the ionosphere case—following the onset of heating.
These instabilities are suppressed*® in the developed tur-
bulent state which is sustained by the nucleation of local-
ized states.
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