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Streamer Formation in Plasma with a Temperature Gradient
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Turbulence produced by a temperature gradient in a collisional plasma is investigated. The system
evolves to a state in which highly elongated streams of plasma move up and down the temperature gra-
dient. The resulting transport greatly exceeds estimates based on mixing-length arguments. It is argued
that such streams are the preferred nonlinear state of turbulent fluctuations driven by both VT, and VT;.

PACS numbers: 52.25.Fi, 52.35.gz

A plasma with a sufficiently large electron or ion tem-
perature gradient develops a negative compressibility
and consequently becomes unstable. There is increasing
evidence that the resulting ri, (driven by VT, ) and ri;

(driven by V T; ) instabilities ' may be a cause of the
anomalous transport in tokamaks. While the linear sta-
bility of these modes is now fairly well understood, the
nonlinear saturation of the fluctuations and associated
thermal transport are still under investigation.

In the present Letter we focus on the nonlinear behav-
ior of a very simple straight magnetic field configuration
with an electron temperature gradient. A set of non-

linear equations describing the ri, mode is derived from
the Braginskii fiuid equations and solved numerically.
The calculation is specifically carried out for the ri, in-

stability; however, we believe that the formation of
streamers is generic to both the ri, and ri; modes. The
turbulent fluctuations exhibit a spontaneous transition to
a state of enhanced transport in which highly elongated
vortices (streamers) enable the fluid to take large steps
along the temperature gradient. In a simple analytic cal-
culation we demonstrate that these streamers are the
preferred nonlinear state of the system. An analogous
analytic calculation applies equally well to the rt; insta-
bility. Thus, the formation of streamers is apparently
generic to these VT-driven, negative-compressibility
modes. In this novel regime the thermal transport Di
greatly exceeds that given from the simple expression
Di-y/k~ which is widely invoked in the literature.

In the ri, instability the electrons behave like a fluid

while the ions, because k&p; ) 1, respond adiabatically,
n/n = ep/T;, where tl —and p are the density and poten-
tial perturbations. In the fluid limit B/Bt « v„, the local
linear growth of the basic instability is given by
y„=1.7lkifDii, (ri, —1), where Dt, is the parallel elec-
tron diffusion coefficient, kii is the parallel wave vector,
and ri, d ln T,/d inn. The unstable domain of the
mode in k space is limited by classical perpendicular
transport D~, at short scales (y„&k&Ds, ) and by elec-
tromagnetic effects at long scales (k&D, & y„, with

D„=ri|ic /4tr the classical flux diffusion rate). The di-

amagnetic propagation stabilizes short parallel wave-

lengths [y„&co+ k» V+„, with V„=cT,/eBL„and

Btlr/Bt —V~y=b Vn+1.71b VT —b Vp, (3)

with d/dt B/Bt+v V, v = —Vp&&i, and b V=B/Bz
+Vyxi V. The dimensionless variables are defined by
TL„/LiTp T, nL„/L~np n, yLt/BpL~ y, x/L J

x, y/L& y, z/Lt z, and t/r t, with the perpen-
dicular and parallel scale lengths given by Li =D,/V+„
and Lt (Dii, D, ) ' /V+„and the time scale by

D,/V+„. In Eqs. (1)-(3) the terms proportional to P
result from cross-field, classical transport, the term pro-
portional to (b V) in Eq. (2) arises from parallel
thermal conduction, and the last terms on the right-hand
side of Eqs. (1) and (2) arise from parallel electron
compression. In a plasma with an initially uniform den-
sity and temperature gradient, T T+rt, x, n =n+x,
and p n-

In the dimensionless equations the characteristic
transport rate is Di-L&/r-D„, the flux diffusion rate.
This result is a consequence of our choice for Li which
corresponds to the long-wavelength, electromagnetic
cutoff of the unstable spectrum. A choice for L& based
on the short-wavelength cutoff of the spectrum results in

the characteristic diffusion rate D~ -Di, -PD„ the
classical transport rate. Most generally, we must have
D& D„f(P,ri, ) since P and ri, are the only independent
parameters of Eqs. (1)-(3). The sensitivity off to p will

determine whether long or short wavelengths dominate
the transport.

Equations (1)-(3)have been reduced to 2D by our as-
suming that n, T, p, and Vr in Eqs. (1)-(3) are functions
only of x and y+ az, with a a constant so that
B/Bz aB/By. The equations are then integrated from

L„=(d inn/dx) '].
A set of nonlinear equations describing the instability

in a uniform magnetic field Bp can be derived from the
reduced Braginskii fluid equations. In dimensionless
form they are the continuity, electron temperature, and
flux diffusion equations,

dn/dt —PVin = PV&T/4 ——b VV~@,

2 dT/dt —1.6(b V) T —1.35pV~T

= —(P/2)Vin —1.71b VViy, (2)
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FIG. l. Anomalous transport Di/D, vs time.
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random initial conditions with a pseudospectral code. '

Insensitivity of the results to time step and grid spacing
has been carefully verified. A large number of runs have
been completed on grids ranging from 32 x 32 to
128 x 128, most having been run on the finer grid.

In Fig. 1 we plot the anomalous transport coefficient
D & versus time for a 128 x 128 run with g, =3.5,
P 0.001, and a=0.35. The transport rate saturates
around t =28 and then rises to a much higher level at
late time. In Fig. 2 we show plots of i pk i

= —
ink i in k

space [m=(0.4k„,2.0k~)] and contours of (()(x,y) in

configuration space at t =32, where D & first saturates.
The two large peaks in Fig. 2(a) fall in the region of
linear instability. The linear growth rate is symmetric
around m~ 0 and the most unstable mode is given by
m=(4, ~6). The linearly unstable region of the spec-
trum occupies only a very small region of the grid. Com-
putationally we require a very large number of linearly
stable modes at large i k i in order for the results to be
insensitive to the grid boundaries. The physical reason
for this requirement will be explicated shortly. The con-
stant potential contours in Fig. 2(b) are the streamlines
of the fluid flow. They form closed vortices.

In Fig. 3 we show plots of ipk i and contours of
p(x,y) and T(x,y) at late time when D&=0.06 is much
greater than in Fig. 2. The spectrum of ipk i in Fig.
3(a) has several noteworthy features: The spectrum has
become strongly asymmetric around k~ =0; the spectrum
has become extremely peaked around m =(2, —3) (the
longest-wavelength unstable mode in the grid); and low-

level fluctuations extend all the way to the boundary.
The potential contours corresponding to this asymmetric
spectrum in Fig. 3(b) are extremely elongated in com-
parison with those in Fig. 2(b), enabling the high-
temperature plasma to stream down the gradient and the
low-temperature plasma to stream up the gradient with a
very large step size. As a consequence, a very steep gra-
dient in the local temperature forms at the boundary be-
tween the opposing flows which can be seen in the con-
tour plot of T(x,y) in Fig. 3(c). This local gradient des-
tabilizes very-short-wavelength modes which appear
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FIG. 2. (a) Plot of ipk i in k space [m=(0.4k, 2.0k~)I and
(b) corresponding contours of (s(x,y) in configuration space at
i =32.

along the elongated vortex in Fig. 3(b) and in the spec-
tral plot in Fig. 3(a). The transport resulting from these
elongated vortices is of order D~-0.06D, compared
with the traditional estimate D& =ylk~-0. 006D, for
the m (2, —3) mode. The formation of this strongly
asymmetric spectrum has been observed in all of our
simulations. The spectrum can peak at ky positive or
negative, depending on the initial conditions. In some
cases the peak of the spectrum has been observed to flip
from ky &0 to ky )0 or vice versa. During the transi-
tion the transport is greatly reduced so that D& does not
simply approach a constant at late time. It changes er-
ratically.

We now present a simple calculation which demon-
strates that the asymmetric state is favored over the sym-
metric state. We retain only the essential terms in Eqs.
(1) to (3) which describe the linear stability and the
dominant nonlinearities. In the electrostatic limit, Eq.
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The convection of the temperature in Eq. (5) is the dom-
inant nonlinearity in the electrostatic limit. The simplest
model which reproduces the breaking of the symmetry
observed in the simulations is the interaction of the three
waves,

T = T+ cos(px+qy)+ T cos(-px —qy) + Tpsin(2px),

(6)

with n given by Eq. (4). Inserting Eq. (6) into Eq. (5),
we obtain a set of coupled nonlinear equations for T+,
T-, and Tp,

32
X

4 8 —,:—.. .-.:.-,.
--

T ~ —y„T+. —MTpT ~ =0,
Tp+ ypTp+ 2MT+ T — 0,

(7)
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with y„=1.7ia q rl„ the linear growth rate of the insta-
bility, yp 0.9P(p +q ), the damping from classical
cross-field transport, and M=1.71a pq . These equa-
tions yield the equilibrium solution

Tp —y„/M; T+ = ypy„/2M; T =T+ . - (9)
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Physically this solution corresponds to periodic vortex
rolls (T- T+ cos(px) cos(qy)] which quasilinearly fiat-
ten the local temperature gradient tBT/Bx -2ri,
&cos(2px)]. This state is similar to that shown in Fig. 2
and results in the rather low level of transport at t =30
in Fig. 1. Linearizing Eqs. (8) and (9) around this solu-
tion, we find that it is unstable with a growth rate
y=2y„, and eigenfunctions T+ = —T with Tp=0.
Thus, either Ti or T increases and its counterpart de-
creases, as is seen in the simulations. The large-time
solutions in Eqs. (7) and (8) always correspond to either
T+ or T growing exp-onentially (y= y„) and complete-
ly dominating the remaining two modes. In this case the
flow pattern corresponds to plane sheets at a finite angle
with respect to the direction of the original gradient.
More modes must be including to saturate the instability
and form the elongated vortices seen in the simulation.
It is the formation of these vortices which allows the
transport to rise dramatically for t ) 32 in Fig. 1.

A number of runs have been completed with different
values of p and ri, to determine the scaling of Di (max-
imum value) with these parameters. We assume that the
transport can be modeled by the simple function

D /D„=aP'(q, —q„)', (10)
0.5 I.O I5 20

(3) reduces to V&y= —1.71aTy and Eqs. (I) and (2)
become

Bn/By=+1. 71a B T/By (4)

BT/Br 0 9PViT+Vnxz V—T=. —ri, Bn/By. . (5)

FIG. 3. (a) Plot of

ipse

i in k space and (b) corresponding
contours of p(x,y) and (c) T(x,y) at late time.

where g„ is the critical value of g, required for instabili-
ty. Unfortunately, ri„depends weakly on P. The values
a=0, 8=2.5, and a =0.025 fit the data very well. Thus,
we conclude that the long-wavelength modes dominate
the transport, which is not too surprising considering the
peakedness of the spectrum in this region and the nature
of the flow pattern in Fig. 3(b). The scaling of D& with

tI, in Eq. (10) is valid only for ri, —ri„not too large.
For very large ri„we can rescale Eqs. (1)-(3),eliminate

g, as a parameter, and show that the transport again
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scales as D„ independent of rl, . Finally, numerical com-
putations have also been completed for a=0.28. The p
and T fluctuations are qualitatively the same as those
shown in Figs. 1-3 (the fluctuations extended to some-
what larger wavelengths) but D~ was essentially un-

changed. The insensitivity of the results to a provide
some confidence that a full 3D simulation will produce
similar results.

We have shown that fluctuations driven by rl, form
highly elongated vortices or streamers which greatly
enhance the transport over that which would be predict-
ed from D& —y/ki. Effectively, the system collapses to
a quasi-one-dimensional state. Two interesting questions
are the following: How general are these results in terms
of applicability to other instabilities; and what will be the
influence of magnetic shear on the streamers? Similar
2D calculations" of the nonlinear saturation of the ri; in-

stability have recently been completed. Streamers again
dominate the nonlinear behavior of the system. Stream-
ers are also visible in recent simulations of the
large-Larmor-radius interchange mode. ' Magnetic
shear only weakly affects the linear ri, and ri; instabili-
ties. However, the significant elongation of the stream-
ers along VT may be disrupted by magnetic shear and
will be investigated in the future. Care must therefore
be exercised in applying the present results directly to
the tokamak confinement problem. On the other hand,
our results have important implications for heating
configurations with weak or no magnetic shear, such as
some stellarators (Wendelstein VIIA), the central cell of
tandem mirrors, and the central flat q region in

tokamaks. Once a threshold in ri; or rl, is exceeded dur-
ing heating, streamers will form in both the ion and elec-
tron temperature profiles, strongly degrading

confinement. Fortunately, this behavior can be mitigat-
ed by peaking the density profile as the plasma is heated
so as to maintain g, ; below threshold across the entire
profile. The development of techniques to control both
density and temperature profiles is therefore essential to
achieve efficient heating.
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