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Approximation Scheme for Constructing a Clumpy Universe in General Relativity
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%e shall develop an approximation scheme to construct the metric representing a realistic clumpy
universe in general relativity. Spatial averaging is used to express the fact that the expansion of the
universe is generated collectively by the clumps of matter. The dynamics of the clumps is treated by the
post-Newtonian-type approximation. The scheme allows one to calculate the back reaction due to the
growth of clumps on the expansion and vice versa, An expression for the deviation from homogeneous
and isotropic expansion is derived in terms of inhomogeneities of the gravitational field generated by
clumps. It should also be used as the correct interpretation of the observation of gravitational lenses.

PACS numbers: 98.80.Dr, 04.20.—q

The standard Friedman-Robertson-Walker (FRW)
universe models assuming exact homogeneity, isotropy,
and a hot "big bang" have had tremendous succes in

describing the early universe. ' FRW models are firmly

supported by the observation of the thermal spectrum
and isotropies in the cosmic microwave background.

On the other hand, the applicability of FRW models
at the present epoch has sometimes been questioned.
On scales below —100 Mpc, the observed universe is
neither homogeneous nor isotropic, but rather clumpy.
Recent progress in observational techniques has revealed
amazing large-scale structures, such as the presence of
large voids and superclusters.

In spite of extensive theoretical efforts to explain such
large-scale as well as small-scale structures in the
universe, the formation of these structures still remains a
mystery. It is hoped that further information, such as
tnore complete observation of the three-dimensional dis-
tribution of galaxies at high red shifts, will improve the
situation.

These observations would give important information
on large-scale spacetime inhomogeneities because the in-
homogeneities influence the propagation of light. Thus
the information provided by observations would be useful
only if we had a reliable description of inhomogeneities
in the expanding universe and of the propagation of light
in such an inhornogeneous universe. As far as the latter
is concerned, the geometric-optics approximation based
on general relativity offers a sufficiently accurate de-
scription in the cosmological context. However, it seems
that no satisfactory approximation for describing an in-

homogeneous universe is available except in the linear-
ized case in which the density contrast is supposed to be
small. An approximation in which the density contrast
is much larger than unity is particularly needed for the
correct interpretation of the observation of gravitational
lenses. The linearized theory is clearly not sufticient for
such a purpose.

The aim of the present work is to develop an approxi-

mation scheme for constructing the metric of fully inho-

mogeneous (clumpy) universe models within the frame-
work of general relativity. The point here is to realize
that the metric perturbation can remain small even when

the density contrast is much larger than unity. The solar
system is a typical example of this. We have a very
powerful method of calculating relativistic effects for
such systems, namely, the post-Newtonian approxima-
tion. The size of the metric perturbation and that of
the density contrast are independent of each other in the
exact theory (models of an isolated star surrounded by a
vacuum field) as well as in post-Newtonian approxima-
tions. The metric may often be computed as a function
of the source from a linear approximation to the solution
of the field equation, whereas motions have to be com-
puted from the nonlinear equation; otherwise the first-
order metric does not approximate a solution of
Einstein's equation over dynamical time scales (say,
periods). Moreover, in linearized approximation the mu-

tual gravitational interaction between clumps is not tak-
en into account. For this reason it is also necessary to
have the post-Newtonian-type approximation in cosmol-

There have been some studies on self-gravitating
fluids' and post-Newtonian approximation" in an ex-

panding universe. In these treatments the expansion law
is prescribed and fixed once and for all in spite of the
fact that the expansion is generated collectively by the
clumps of matter. We will make use of a simple spatial
averaging by assuming spatial periodicity in the initial
data to express this fact. Then the global equations for
the universe expansion and the equations for local inho-
mogeneities (clumps) become coupled equations and
they have to be solved simultaneously. Thus the back re-
action of the development and motion of the clumps on
the expansion of the universe, and vice versa, may be cal-
culated. Since Einstein's equation is nonlinear, any
averaging process is far from trivial in general. Howev-

er, we are not treating here the most general situation in
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g„„=—dri +do (k), (2)

where d 03(k) is the standard metric on S if k =1 and
on R if k =0 or —1. The h„„'s are supposed to describe
local inhomogeneities and are assumed to be small. As
explained above, this does not imply that the density con-
trast is small. The above metric is the standard FRW
one expressed by the conformally rescaled time q when

h„, vanishes. This does not mean that the zeroth-order
spacetime is necessarily one of the FR% spacetimes, for
that depends upon the approximation that one chooses.
In the linearized approximation, the zeroth-order space-

the exact theory. Rather we are developing an approxi-
mation scheme in a cosmological situation. In this case I
give an argument that all complexities which might ap-
pear in the full theory are, in fact, of higher order and

may be neglected.
We first make the following Ansatz for the metric:

2 -(b)
gI » a (gu» + "u») a gu»

where a is supposed to describe the global expansion and
is assumed to be a function of time only. g is given by

I -(b)h„, h„„——,' g„„h, (3)

and to work in the "harmonic gauge"

h""i„=0,

where h g ""h„„.The indices on h are shifted by g
and the bar ( i ) indicates the covariant derivative with

respect to g
The above Ansatz for the metric is used to calculate

the Einstein equation as follows:

time is taken to be an FR%' spacetime. On the other
hand, if one employs the post-Newtonian approximation,
the zeroth-order spacetime is the conformally
transformed Newtonian spacetime which is a four-
dimensional manifold with degenerate metric. ' For the
moment we shall retain a more general level and derive
the formal equations under the assumption that h is
small and that the scale on which h varies is small corn-
pared to that of a and g . These assumptions shall be
made more precise in a moment.

In the following calculation it is convenient to use the
trace-reversed perturbation defined by

( y ) 2(4- (b)uq-(b)»|) - (b)g|)- (b)u») 2(»/ )(- (b)ug-(b)»g - (b)gg- (b)u») +gu»

+(a ja)(2hz( I») hu»ln -(b)n(uh I»)+ ' -(b)u~h ln) ' hu»lp g~Grl ~2g 2 (5)

where Au' is the background spatial curvature term
given by A""=—3kg ""=3k, A'J= —kg 'i, and Au

=0. ru"=a T"'+t""and t"" consists of terms quadra-
tic in h and may be regarded as a gravitational stress-
energy pseudotensor. ' In the above calculation terms
like h, (a'/a)h, and (a "/a)h have been neglected.
Since we have retained terms like hu luhu l" in t"", this
means that we are treating here the metric perturbations
whose amplitudes are larger than a "ja or (a'/a) . This
is the condition that the self-gravity of clumps has a
more important eff'ect on their dynamics than the expan-
sion of the universe. In order to make this point more
clear, we shall introduce two independent small parame-
ters b and x. The e is associated with the size (ampli-
tude) of h, h O(b ); and the x is associated with the
ratio between the scale of the variation l of h and that L

1

of a and g; x I/L. Then the above condition implies

e) x. For example, if we take a cluster of galaxies
whose size is about 1 Mpc, then v will be —(1
Mpc) j(10 Mpc) —10, where L —10 Mpc is the
present horizon size. Thus we are interested in the
metric perturbations whose amplitudes [-O(e )] are
larger than 10 . In the case of superclusters whose size
is of the order of 50 Mpc, the amplitude of the metric
perturbation might not satisfy the above condition and
one has to take into account terms like (a "/a)h. The in-
clusion of such terms allows us also to treat the transi-
tion from the linear to nonlinear regime. It will be
shown in a future publication that the inclusion of such
terms will not cause any difficulty in the present
scheme. ' As long as we consider scales less than super-
clusters, we can safely neglect these terms.

Equations of motion are derived from the conservation
of the stress-energy tensor as usual,

T""l,+(a'ja)(6T""—g ""T+h""T—g ""h T )+(huul ~z hu lu) T —(h l&Tuu —
4 h "T)=0, (6)

where terms of order h T have been neglected.
tNow we take the spatial average of Eq. (5) assuming

spatial periodicity of the material initial data as well as
of the free data for the gravitational field. The spatial
average over a volume V is defined as usual,

(Q) =V ' QdV, (7)

where dV is the invariant volume element in the back-

ground space. It should be noted that the only property
that we shall use in the calculation below is (Ql;) =0.
Spatial periodicity does imply this. However, if the
averaging volume is large enough and the perturbations
are randomly distributed, then this quantity (Q l;) is al-
most always negligibly small. ' Thus the equations de-
rived in this paper may hold for more general aperiodic
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perturbations. The result is given by
T

(r"")—k,
a' SxG
a 3

(s)

immediately integrate Eq. (10) to get

&h")(ri) = ", &h")t„(rio)a 60 a 2(ri')

4zG
3

(r« r"—) —kk

a 2[a 2(h'i)
t „j t

„=16nG(~'J), (lo)

—16zG(r"" (r«))+(a'/—a)(h"'t; —h "I, t„),
&h"' —16nGr"'+(a'/a)(h""I +hk I )

where I have defined the spatial trace-free part of r'J:
i' =r' —

3 g
' sk. Note that the average of the time

space components of Eq. (5) gives (r"') =0. In deriving
the above expression use has been made of the facts that
(h«) =(h„;)-0 and (hk) 0. The spatial average of the
gauge condition implies that (h«) and (h„;) are constants
and thus we may eliminate them by a suitable coordinate
transformation. The third equality comes from the fact
that (hk) expresses an additional isotropic expansion and
the effect is absorbed into the scale factor by an ap-
propriate redefinition of the time variable and scale fac-
tor. Since the constant part in (h'J) has no physical
meaning, we may put that part equal to zero and then

(ds ) =a [ —dr) + (6;i + (h;i ) )dx' dxi}, (i2)

Eq. (11) is the expression for the deviation from isotrop-
ic expansion in terms of the inhomogeneities. Thus glo-
bal spacetime expands anisotropically except if (h'J) van-
ishes identically. A sufficient condition for global
isotropic expansion (statistically homogeneous and iso-
tropic model) is given by

(h'J) „(go)=0 and (i")=—0.
The equations which determine the evolution of the lo-

cal inhomogeneities are derived by substituting the above
equations back into the original Eq. (5). These are

(i4)

(is)

f%q d I fey

+16xG ", dri" a'(ri")&i") .
~J go a2( t) J 'go

(ii)
Since the spatial average of the line element takes the
following form,

&h = —16zGi' +(a'/a)[2h t„+4(h" ' — g'ih"—tk)],
&h"k —16zG(r"k (r'k))+ (a—'/a)(h"kt„—h""tk)

(i6)

(i7)

T""=[p+p(p)]u "u'+p(p)g"', (is)

A

where h h'J —,' g 'ih "k a—nd &h""=h"' ~t~. These
equations are supplemented by the equations of motion
given by Eq. (6).

Up to this point we have not employed any particular
approximation scheme except that we have been neglect-
ing terms of order h, (a'/a)h, and (a "/a) h. What
kind of approximation one chooses for solving the equa-
tions depends upon the kind of physical situation that
one has in mind. The situation I wish to describe here is
the universe with material clumps of various scales in-

teracting gravitationally with each other. The density
contrast between these clumps and the mean density is
much larger than unity. The typical peculiar velocities
of the clumps are much less than the speed of light. If
we ignore the effect of the cosmic expansion, these
clumps are well described by a Newtonian theory. Thus
it is natural to solve the local equations (14)-(17) by
means of a post-Newtonian approximation. We shall
therefore employ a post-Newtonian approximation and
demonstrate how one can solve the above equations per-
turbatively up to the first nontrivial order, i.e., up to the
order at which the first nonvanishing effect of inhorno-
geneities upon the expansion appears. For simplicity we
shall take the k =0 case and a perfect fluid as an exarn-
ple of the material source:

T""~a p, T"' a pU',

T"-a '(pv'v'+ pB"),

where v'-dx'/dg. Using these expressions, one obtains
the lowest-order equations for the metric perturbation:

hh"" = —16RGa (p —pb) . (2o)

This is the lowest-order approximation to Eq. (14). Oth-
er equations [(15)-(17)l are not needed because they
contribute to the second post-Newtonian order. The pb
is the mean density defined by pb=V 'fypd x. We
use these expressions to calculate the gravitational
stress-energy pseudotensor in the lowest order:

r«= —(SzG) 'a4[4yay+3(Vy)'],
(2i)

r' =(S+G) 'a'[ 2y'y'+4yy "+—~"[40~0+3(~A) ]]

t
where p is the density, p the pressure, and u" is the
four-velocity.

The standard method of calculating the post-
Newtonian approximation shows that the T"" in the
lowest order are as follows:

2177



VOLUME 61, NUMBER 19 PHYSICAL REVIEW LETTERS 7 NOVEMBER 1988

where p is defined by h""=4a p. One may see now that the effect of inhomogeneities expressed by the "Newtonian"
potential p appears at the first post-Newtonian order. Thus we have to calculate T""up to the first post-Newtonian or-
der for consistency. At the end we have the following expressions for the total effective stress-energy pseudotensor:

r""=a p+[a p(v +2a p) —(StrG) 'a (4PhP+3(&P) )),
r' =a (pv'v +pb' )+(StrG) 'a [—2p'P' 4P—P' +b' (4&t5&+3(&P) )1.

The averaging gives

(r"")=a 'ps+ a '(pv ')+ a '(5/StrG)((&y) '),
(r't) =a (pv'v +pb')+a (I/StrG)(2&'P' —b' (&P) ),

(22)

(23)

(24)

(2S)

where use has been made of the equation for p, namely,
4trG—(p —pb).

These averaged sources are used to calculate the glo-
bal expansion once we know the time evolution of the
material quantities p and U' as functionals of the scale
factor a. These are calculated from the equations of
motion (6). For the calculation up to the first nontrivial
order that we are interested in here, the knowledge of
these quantities at the Newtonian order is sufficient.
The equations (6) become up to that order

p „+3(a'/a)p+ (pv'); =0,
v'„+(a'/a)v'+vjv'I+p 'p'=a y'.

(26)

(27)

Equations (8)-(10), (20), and (24)-(27) are the cou-
pled equations to be solved simultaneously.

We have developed an approximation scheme to con-
struct a model of a fully inhomogeneous universe based
on the post-Newtonian approximation within the frame-
work of general relativity. By using a simple spatial
averaging procedure, this scheme allows one to calculate
the back reaction due to the growth of local inhomo-
geneities on the cosmic expansion and vice versa.

This scheme may also be used for the correct interpre-
tation of observations of gravitational lenses. So far
rather crude descriptions of inhomogeneities have been
used in the study of light propagation. ' The absence of
a realistic metric of an inhomogeneous (clumpy)
universe is the major ambiguity in the theory of gravita-
tional lenses. Once such a metric is known, the problem
becomes a simple integration of the focusing equation of
the light bundle. The present scheme provides an ap-
proximation to the metric of such a clumpy universe and
thus it is expected to play a fundamental role in the
correct interpretation of observations to reveal the nature
of the image source as well as the lensing object.
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