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Diagonal and ON'-Diagonal Density Fluctuations in Hot Nuclear Matter, and
Applications to Neutrino Transport in Supernovae
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We calculate the effects of interactions on the density fluctuations of an n,p, e plasma. The scattering
of neutrinos arising from the Fermi part of the neutral current interactions with protons, under superno-
va conditions, is practically extinguished by Coulomb effects in the plasma. Charged-current reactions
are discussed in terms of off-diagonal density fluctuations. Inclusion of the symmetry energy term in the
nuclear interaction gives rise to a large reduction in the Fermi part of the cross section for
v+n e +p.

PACS numbers: 97.60.Bw, 21.65.+f, 23.40.—s

According to present theory the greater part of the
lepton number of the presupernova core is trapped,
ephemerally, in the collapse process. ' Most of the lep-
ton number then diffuses out, as electron neutrinos,
within a few seconds after the collapse. 4 The excita-
tion energy of the core is radiated over a similar (but not
necessarily identical) time scale, through emission of all
species of light neutrinos and antineutrinos. The rates of
lepton-number loss and cooling are governed by the neu-
trino opacities in the interior of the core. The spectrum
depends on the fluxes, as determined by the solution to
the interior problem, and also on the opacities of the
outer layers, insofar as these opacities affect the radius
of the neutrino "photosphere" and therefore the emitting
area.

In current scenarios the outer layers of importance to
the neutrino problem consist of nuclear matter in the
density range (5&10' )-10' g cm, at a temperature
(postshock) of 5 to 20 MeV. In this region of density
and temperature, nuclei may (or may not) be totally dis-
sociated. In the present Letter we shall report new re-
sults for opacities for the case of dissociated nuclei, that
is for the case of a gas of neutrinos, protons, electrons,
and trapped neutrinos. The electrons remain degenerate
throughout the region, but the neutrons, much of the
time, and the protons, most of the time, are nondegen-
erate. The only interactions taken into account, beyond
the weak interactions, will be the Coulomb interactions
among the charged constituents, and a nuclear force
term responsible for the "symmetry" energy in nuclear
matter.

There are three observations which underly our treat-
ment.

(a) The wavelengths of the neutrinos under considera-
tion are a few times the interparticle spacing, in most of
the regions of interest.

(b) The scattering of a neutrino of energy, say,
3P '=3k&T, is determined by the thermal fluctuations
in the density, for the Fermi part, and the fluctuations in

spin density, for the Gamow-Teller part of the neutral-

current interaction. Consider first the neutral-current
scattering of a v in our medium (a medium containing
one species of nucleon, for simplicity). Since the energy
transferred to the nucleon is small, we can use closure to
write an expression for the differential cross section per
unit volume, from the Fermi interaction, s

V ' = (8tr) 'Gtt E„(1+cose)poS(q),
d cos8

where V denotes volume and where

$(q) =(ppV) '(p(q)p( —q)). (2)

Here q is the momentum transfer to the nucleons, ( )
denotes thermal average, and the operator, p(q) is the
Fourier transform of the nucleon density. The thermal
average is to be taken over the states, (i), of the hot nu-

clear medium. pp is the average nucleon density and

S(q) is the static liquid structure factor. All effects of
lepton degeneracy will be expressed as occupation factors
multiplying the right-hand side of (1); it is the nucleon
density-density correlation function which will be of con-
cern to us here.

(c) The long-wavelength limit of the correlation func-
tion in (2) is given by the classical result,

8 F
lim S(q) = ppp

~po
=p 'po&T ',

where F is the free-energy density, and KT is the iso-
thermal bulk modulus of the medium.

To compare this approach to the conventional wisdom,
of neutrino transport, viz. (mean free path) ' = crp

x pp x (Fermi factors for degenerate species), where ap is
the cross section on an isolated nucleon, we note the fol-
lowing:

(a) For a noninteracting Boltzmann gas of nucleons
the results of the two approaches are identical, when the
ideal gas equation of state is used to determine ET in
(3).

(b) For the case of noninteracting degenerate nucleons
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we have the familiar result for the structure function, for
the case of small q and small T,

S(q) = —,
'

qkF '+3M~(pkF)

The second term on the right-hand side dominates the
first, for a neutrino of momentum, e.g. , 3P '. This dom-
inant term is exactly the classical result, (2), substituting
the bulk modulus of a free Fermi gas. Thus, even in the
degenerate limit, the classical term dominates. It is
straightforward to include the eff'ects of Coulomb in-
teractions for the case of the Fermi part of the neutral-
current scattering of a neutrino from the protons in the
medium. To calculate the mean fluctuations of p(q) we
use a thermal fluctuation distribution

Prob[BP(q)] =Nexp( —PBF),
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FIG. l. The solid curve is the structure function, S(0), for
noninteracting protons, for the case T 10 MeV; it differs
from unity only because of the Pauli-principle effects. The
dashed curve is S(0) from (7a), where the Coulomb eff'ects are
included.

where BF is the variation of the free-energy density of
the protons in the system (the presence of neutrons being
irrelevant at the moment), and is given by

(2V) 'g, &p(q)~p( —q), +
&'Fo 4ze'

, r)po q e q.0

The first term on the inside of the parenthesis gives the
fluctuation energy of a noninteracting gas, and the
second term takes into account the eA'ects of the
screened proton-proton interactions, following a Born-
Oppenheimer treatment of the electrons. We take the
long-wavelength limit, in which the relativistic Thomas-
Fermi screening momentum determines the dielectric
constant,

q e(q, 0) = e po/ =2ze b
12n

(3/2) I/3

The structure factor is determined from (2), (4), (5),
and (6):

r) Fo
lim S(q) =P Po +2bPo

8po

S(0)ND
= (1+2bppo)

where we have evaluated in the Boltzmann limit in (7b).
Figure 1 gives a comparison of the structure factor of
(7a) with that of the noninteracting Fermi gas, for
kaT 10 MeV, over a range of densities covering the
transition from quite degenerate to almost nondegen-
erate.

There are some circumstances under which we can ap-

ply our nearly classical approach to the charged-current
interactions v+n e +p, as well. In the domain of
high density (p & 10' g cm ) and (initially) fairly low

temperature (ksT ( 10 MeV), which characterizes the
inner core of the star, the lepton kinematics are con-
strained by the four Fermi factors for the degenerate
species in such a way that the lepton energy transfers are
not small compared to the lepton energies themselves.
But in matter at lower densities, 10' to 10'4 g cm, at
postshock temperatures in the region of 10 MeV, the nu-

cleon degeneracy ranges from partial to none. In this
case, the average lepton energy transfer (for a 10-20-
MeV neutrino) becomes quite small, and the closure ap-
proximation again applicable. We obtain, for the vector
current contribution to the reaction v+ n e +p, an

(7b) expression analogous to (1), with the liquid structure
factor replaced by S + (q), where

S +(q) =(P„V) '[Trp (q)p+(q)exp( —PK)][Trexp( —PK)]

where p~ =yr z~y. (We also define p3=y z3y, and

p sty. ) For the operator, K, we take would make no difI'erence in the results to follow. From
the identity,

Ho++ppp)d 3x ——pp(0) + —pp3( (8) p+ (0)exp( —PK) =exp( —PK)p+ (0)exp(PP),
where p =p„—p~, determined from the conditions for
equilibrium with electrons and trapped neutrinos. The
X-dependent term in (8) is chosen to provide the symme-
try energy of nuclear matter. The numerical value of X

is taken from Vautherin and Brink's ' Skyrme-
potential fit to nuclear data, k =390 MeV fm . An addi-
tion of an isospin-independent term to the potential
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and the commutation relation,

[p+ (0),p- (0)] =p3 (0)

we obtain an expression for the structure function
S -+(0),

S +(0) p„'(p„—p )(1 —e "s)
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where we have used p„—p~
= —(pq(0)) V '. The effect

of the symmetry-energy term on the structure function is
to change the relation between neutron and proton densi-
ties and the quantities, p, p,

p. =F[(p+p )/2 7(p—.—p, )],

pp =F[(p —P)/2+X(p„—p~)],
(10)

where F(p) is the density of a free nucleon species of
chemical potential, p, i.e., the standard Fermi integral.

Solving for p in terms of p„,p~, and substituting in (9)
gives an expression for the structure function in terms of
densities. We specialize to the case of Boltzmann statis-
tics, for the purposes of illustration,

&No+ = [I —p~(p„—p~) 'exp[ —2PX(p„—p~)]j

In order to calculate the transport of neutrinos in the
medium we need the collision term in the transport equa-
tion, which involves both the reaction v+n e +p
and the reverse process, e +p v+n T.he eff'ective

transport differential cross section for a neutrino of ener-

gy E is proportional to the quantity 8' "'
W=V 'j(p (0)p+(0))[l+expp(p, —E)] '+(pi(0)p (0))[1+expP(E —p, )]

where we have substituted the neutrino energy into the
electron Fermi factor, following our approximation of
quasielasticity for the leptons. The effects of the second
term are sometimes referred to as induced absorption.
In analogy with (9) we have

(p+(0)p-(0)) =V(p, —p )(e"~—1)

which leads directly to

W=(p„—p~) j[1+expP(p, —E)]

+[exp(PP) —1] ']. (ll)

Since the electron chemical potential is substantially
greater than the neutrino chemical potential (and
greater than the energies of most of the neutrinos, at any
density of trapped leptons), the second term on the
right-hand side of (11) provides most of the transport
cross section. We calculate the ratio of this term to its
value at p 0,

R [exp(PoP) —11/[exp(PP) —1] (12)

I.Q

0.8—

for fixed neutron and proton densities. Here po is the
n —p chemical potential difference for X=0; p and Jto
are determined from the solutions to (10). The results
are plotted in Fig. 2, for a proton fraction Y=0.3,

kaT 10 MeV. The reduction in cross section is
dramatic over a significant region of temperature.

In this Letter we have incorporated those effects of in-
teractions which we think are the dominant ones for the
case of the Fermi cross sections. The Gamow-Teller
cross sections, numerically more important, can be treat-
ed by similar, but somewhat more elaborate means. This
treatment also requires more extrapolation of the nuclear
force terms (now the spin-spin, and the spin-isospin-
spin-isospin interactions) from the domains in which

they have been studied'; they are not included in the
Skyrme-potential phenomenology of Ref. 9. This work is
in progress. The indications are that the effects will be
larger than those, as a result of the symmetry energy,
calculated in the present paper for the charged-current
interactions.

The most important result of the present work is the
conclusion that interactions can have a large effect on
neutron opacities, even in regions of density in which it
has commonly been assumed that they could be neglect-
ed. "' It is not within the scope of this Letter to at-
tempt a quantitative estimate of the effects of the
modifications in opacity on the neutrino pulse from the
supernova core. They will be in the direction of a shorter
deleptonization time and a reduction of the radius of the
photosphere, for electron neutrinos. Both of these effects
shift the neutrino spectrum upward in energy. The new

opacities should be incorporated into future calculations
of the neutrino output of a supernova.
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FIG. 2. The quantity R of Eq. (12), for a range of density,
for the case T 10 MeV, Y~ 0.3.
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